Analyse de surviethumb|Exemple de courbe de survie. L'analyse de (la) survie est une branche des statistiques qui cherche à modéliser le temps restant avant la mort pour des organismes biologiques (l'espérance de vie) ou le temps restant avant l'échec ou la panne dans les systèmes artificiels, ce que l'on représente graphiquement sous la forme d'une courbe de survie. On parle aussi d'analyse de la fiabilité en ingénierie, d'analyse de la durée en économie ou d'analyse de l'histoire d'événements en sociologie.
Survival functionThe survival function is a function that gives the probability that a patient, device, or other object of interest will survive past a certain time. The survival function is also known as the survivor function or reliability function. The term reliability function is common in engineering while the term survival function is used in a broader range of applications, including human mortality. The survival function is the complementary cumulative distribution function of the lifetime.
Régression de CoxLa régression de Cox (modèle à risque proportionnel) est une classe de modèles de survie en statistique. Les modèles de survie étudient le temps écoulé avant qu'un événement ne survienne. Historiquement, dans le modèle de Cox, cet événement est le décès de l'individu, c'est pourquoi on parle généralement de survie et de décès. Au cours des années, l'utilisation du modèle s'est étendue à d'autres situations, l'événement peut donc être de quelconque nature : il peut s'agir de la récidive d'une maladie, ou à l'inverse d'une guérison.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Hazard ratioIn survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate per unit time of the control population. The hazard ratio would be 2, indicating higher hazard of death from the treatment. A scientific paper might utilise a Hazard Ratio (HR) to state something as follows.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
Structure de donnéesEn informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.