Structured Sparsity Models for Compressively Sensed Electrocardiogram Signals: A Comparative Study
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We investigate a compressive sensing framework in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on multiple unknown (but sparse) signals and formulate the ...
Institute of Electrical and Electronics Engineers2014
We recover jump-sparse and sparse signals from blurred incomplete data corrupted by (possibly non-Gaussian) noise using inverse Potts energy functionals. We obtain analytical results (existence of minimizers, complexity) on inverse Potts functionals and pr ...
Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent struct ...
Linear sketching and recovery of sparse vectors with randomly constructed sparse matrices has numerous applications in several areas, including compressive sensing, data stream computing, graph sketching, and combinatorial group testing. This paper conside ...
We propose a novel regularization method for compressive imaging in the context of the CS theory with coherent and redundant dictionaries. The approach relies on the conjecture that natural images exhibit strong average sparsity over multiple coherent fram ...
This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the d ...
Most learning methods with rank or sparsity constraints use convex relaxations, which lead to optimization with the nuclear norm or the`1-norm. However, several important learning applications cannot benet from this approach as they feature these convex no ...
Over the past decade researches in applied mathematics, signal processing and communications have introduced compressive sampling (CS) as an alternative to the Shannon sampling theorem. The two key observations making CS theory widely applicable to numerou ...
The goal of this paper is to propose diffusion LMS techniques for distributed estimation over adaptive networks, which are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, ...
We study the sparsity of spectro-temporal representation of speech in reverberant acoustic conditions. This study motivates the use of structured sparsity models for efficient speech recovery. We formulate the underdetermined convolutive speech separation i ...