Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Équilibre de Nashvignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Dilemme du prisonnierLe dilemme du prisonnier, énoncé en 1950 par Albert W. Tucker à Princeton, caractérise en théorie des jeux une situation où deux joueurs auraient intérêt à coopérer, mais où, en l'absence de communication entre les deux joueurs, chacun choisira de trahir l'autre si le jeu n'est joué qu'une fois. La raison est que si l'un coopère et que l'autre trahit, le coopérateur est fortement pénalisé. Pourtant, si les deux joueurs trahissent, le résultat leur est moins favorable que si les deux avaient choisi de coopérer.
Théorie évolutive des jeuxLa théorie évolutive des jeux, appelée aussi théorie des jeux évolutionniste, est l'application de la théorie des jeux à l'étude de l'évolution de populations en biologie. Elle définit un cadre de compétitions, de stratégies et d'analyses dans lequel la compétition darwinienne peut être modélisée. Elle a vu le jour en 1973 avec la formalisation par John Maynard Smith et George R. Price des compétitions, analysées en tant que stratégies, et des critères mathématiques qui peuvent être utilisés pour prédire les résultats des stratégies concurrentes.
Stratégie (théorie des jeux)En théorie des jeux, la stratégie d'un joueur est l’une des options qu’il choisit dans un contexte où le résultat dépend non seulement de ses propres actions, mais également de celles des autres . La stratégie d'un joueur déterminera l'action qu'il entreprendra à n'importe quel stade de la partie. Une stratégie est un algorithme complet pour jouer à un jeu permettant au joueur de déterminer ce qu’il doit faire dans toutes les situations possibles du jeu.
Repeated gameIn game theory, a repeated game is an extensive form game that consists of a number of repetitions of some base game (called a stage game). The stage game is usually one of the well-studied 2-person games. Repeated games capture the idea that a player will have to take into account the impact of their current action on the future actions of other players; this impact is sometimes called their reputation. Single stage game or single shot game are names for non-repeated games.
Stratégie évolutivement stableEn théorie des jeux, en psychologie comportementale et en psychologie évolutionniste, une stratégie évolutivement stable ou SES (en anglais, evolutionarily stable strategy ou ESS) est un cas particulier d'équilibre de Nash tel que, dans une grande population de joueurs se rencontrant aléatoirement, plusieurs stratégies peuvent coexister chacune possédant une fréquence d'équilibre propre. Développé originellement en 1973 par John Maynard Smith et George R.
Raisonnement rétrogradevignette|Un jeu séquentiel en quatre étapes avec une limite de prévoyance Le raisonnement rétrograde ou l'induction à rebours (Backward induction) est une méthode de raisonnement qui consiste à partir d'un résultat final connu pour retracer les étapes ou les événements qui ont conduit à ce résultat. Principalement utilisée en théorie des jeux, il est utilisé pour résoudre les jeux de manière séquentielle en partant de la fin du jeu et en remontant jusqu'au début.
Algorithme minimaxL'algorithme minimax (aussi appelé algorithme MinMax) est un algorithme qui s'applique à la théorie des jeux pour les jeux à deux joueurs à somme nulle (et à information complète) consistant à minimiser la perte maximum (c'est-à-dire dans le pire des cas). Pour une vaste famille de jeux, le théorème du minimax de von Neumann assure l'existence d'un tel algorithme, même si dans la pratique il n'est souvent guère aisé de le trouver.
Jeu de coordinationDans la théorie des jeux, les jeux de coordination sont une classe de jeux comportant de multiples équilibres de stratégie purs dans lesquels les joueurs choisissent les mêmes stratégies ou des stratégies correspondantes. Un cas typique pour un jeu de coordination consiste à choisir les côtés de la route sur lesquels conduire, une norme sociale qui peut sauver des vies si elle est largement respectée. Dans un exemple simplifié, supposons que deux conducteurs se rencontrent sur un chemin de terre étroit.