Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Forme normale négativeEn logique mathématique, une formule est dite être en forme normale négative (abrégé FNN) si l'opérateur de la négation (, non) est appliqué uniquement aux variables, et les seuls opérateurs booléens autorisés sont la conjonction (, et) et la disjonction (, ou). La forme normale négative n'est pas une forme canonique, par exemple, et sont équivalentes, et sont toutes deux en forme normale négative.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Schéma d'approximation en temps polynomialEn informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles. Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Porte logiquevignette|Composants TTL Une porte logique (gate) est un circuit électronique réalisant des opérations logiques (booléennes) sur une séquence de bits. Cette séquence est donnée par un signal d'entrée modulé en créneau (signal carré), et cadencé de façon précise par un circuit d'horloge, ou quartz. Les opérations logiques sont réalisées électriquement par une combinaison de bascules ou inverseurs, à base de transistors. Étant donné les capacités d'intégration en électronique, un circuit intégré comporte généralement plusieurs portes à la fois.
Canonical normal formIn Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form (CDNF) or minterm canonical form, and its dual, the canonical conjunctive normal form (CCNF) or maxterm canonical form. Other canonical forms include the complete sum of prime implicants or Blake canonical form (and its dual), and the algebraic normal form (also called Zhegalkin or Reed–Muller). Minterms are called products because they are the logical AND of a set of variables, and maxterms are called sums because they are the logical OR of a set of variables.
Forme normale algébriqueEn logique mathématique, la forme normale algébrique d'une fonction booléenne est une formule qui est un ou exclusif de conjonctions de variables propositionnelles ; par exemple 1 ⊕ a ⊕ b ⊕ ab ⊕ abc (1 correspond à la conjonction vide). Toute fonction booléenne admet une unique forme normale algébrique de taille minimale. Pour construire une formule normale algébrique, on part d'une forme normale disjonctive. On remplace ensuite la négation de a par (1 ⊕ a). On applique ensuite les règles de distributivité et d'absorption (a ⊕ a) = 0.
NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.
Boolean differential calculusBoolean differential calculus (BDC) (German: Boolescher Differentialkalkül (BDK)) is a subject field of Boolean algebra discussing changes of Boolean variables and Boolean functions. Boolean differential calculus concepts are analogous to those of classical differential calculus, notably studying the changes in functions and variables with respect to another/others. The Boolean differential calculus allows various aspects of dynamical systems theory such as automata theory on finite automata Petri net theory supervisory control theory (SCT) to be discussed in a united and closed form, with their individual advantages combined.