En informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles.
Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Un PTAS est un algorithme qui prend en arguments une instance d'un problème d'optimisation et un paramètre et qui produit, en temps polynomial, une solution qui est optimale à un facteur près (ou pour un problème de maximisation).
Par exemple, pour le problème du voyageur de commerce euclidien, un PTAS prend en entrée la donnée de n coordonnées dans le plan (ou dans un espace euclidien de dimension d) dans un espace euclidien, ainsi que le paramètre . Le PTAS produit alors un tour dont la longueur est au plus , où est la longueur du tour le plus court.
On demande de plus que le temps d'exécution d'un PTAS soit polynomial en la taille de l'instance pour chaque fixé, mais il peut être différent pour des valeurs différentes de . Ainsi, un algorithme en temps ou même en est considéré comme un PTAS.
Un problème qui se pose dans la pratique avec les algorithmes PTAS est que l'exposant du polynôme peut croître très rapidement quand diminue, par exemple quand le temps est en
Une façon d'y répondre est de définir des schémas d'approximation temps polynomial dits efficaces (en anglais EPTAS pour efficient polynomial-time approximation scheme), pour lesquels on demande un temps d'exécution en pour une constante indépendante de . On est ainsi assuré que l'accroissement la taille du problème a le même effet relatif sur l'accroissement du temps de calcul, indépendamment du choisi ; la constante cachée dans le peut par contre dépendre arbitrairement de .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
En théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.
En informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
En algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Introduit la complexité computationnelle, les problèmes de décision, la complexité quantique et les algorithmes probabilistes, y compris les problèmes dures au NP et les problèmes complets au NP.
Explore l'algorithme Ford Fulkerson, le théorème Max-Flow Min-Cut, la matrice d'incidence et la complexité de l'optimisation du réseau.
Explore la théorie et l'application des formules quadrature pour l'analyse numérique.
We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...
Elsevier Science Inc2024
, ,
Hydropower plants play a crucial role in the power system facing ambitious renewable energy targets. Due to their inherent controllability, they are well suited to provide flexibility to the grid. However, an increased flexibility provision leads to a prol ...
In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...