Publication

FID-guided retrospective motion correction based on autofocusing

Résumé

This work investigates the possibility of using FID navigator signals to improve the performance of a recently proposed autofocusing-based retrospective motion correction technique. FID navigators were incorporated into an MP-RAGE sequence and 3 subjects were scanned at 3T while performing head movements. The acquired data was retrospectively corrected for motion by exploiting the FID signals to constrain the unknown motion parameters. The results were compared against the reconstructions obtained from a non-FID-guided version of the algorithm, demonstrating that the use of FID navigators for retrospective motion correction leads to improvement in both image quality and computation time.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (18)
Computation
A computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Theory of computation
In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
Afficher plus
Publications associées (44)

Low-Rank Tensor Approximations for Solving Multimarginal Optimal Transport Problems\ast

Daniel Kressner

By the addition of entropic regularization, multimarginal optimal transport problems can be trans-formed into tensor scaling problems, which can be solved numerically using the multimarginal Sinkhorn algorithm. The main computational bottleneck of this alg ...
SIAM PUBLICATIONS2023

Accelerated deep self-supervised ptycho-laminography for three-dimensional nanoscale imaging of integrated circuits

Yi Jiang, Manuel Guizar Sicairos

Three-dimensional inspection of nanostructures such as integrated circuits is important for security and reliability assurance. Two scanning operations are required: ptychographic to recover the complex transmissivity of the specimen, and rotation of the s ...
2023

A mixed precision LOBPCG algorithm

Daniel Kressner, Meiyue Shao, Yuxin Ma

The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
SPRINGER2023
Afficher plus
MOOCs associés (14)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.