Scene Recognition with Naive Bayes Non-linear Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Superagers are defined as older adults who have youthful memory performance comparable to that of middle-aged adults. Classifying superagers based on the brain connectome using machine learning modeling can provide important insights on the physiology unde ...
Early and accurate detection of epileptic seizures is an extremely important therapeutic goal due to the severity of complications it can prevent. To this end, a low-power machine learning-based seizure detection implemented on an FPGA is proposed in this ...
Blood pressure (BP) is a crucial indicator of cardiovascular health. Hypertension is a common life-threatening condition and a key factor of cardiovascular diseases (CVDs). Identifying abnormal BP fluctuations can allow for early detection and management o ...
Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of acade ...
Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get m ...
The researchers used a machine-learning classification approach to better understand neurological features associated with periods of wayfinding uncertainty. The participants (n = 30) were asked to complete wayfinding tasks of varying difficulty in a virtu ...
The controller area network (CAN) is widely adopted in modern automobiles to enable communications among in-vehicle electronic control units (ECUs). Lacking mainstream network security capabilities due to resource constraints, the CAN is susceptible to the ...
Occupant detection and recognition support functional goals such as security, healthcare, and energy management in buildings. Typical sensing approaches, such as smartphones and cameras, undermine the privacy of building occupants and inherently affect the ...
We study unbinned multivariate analysis techniques, based on Statistical Learning, for indirect new physics searches at the LHC in the Effective Field Theory framework. We focus in particular on high-energy ZW production with fully leptonic decays, modeled ...