It was about 125 years ago that the light bulb was commercialized by Thomas Edison. No doubt a brilliant invention at the time, today its low power conversion efficiency is one of the reasons why lighting in the western world has such high energy consumption. Thus, the potential for saving energy is enormous in this area. The introduction of halogen, discharge and fluorescent lamps has lead to certain efficiency improvements, however more than half of the energy is still lost as heat. Light-emitting diodes (LEDs) are very promising candidates for high efficiency light sources, with modern devices showing internal quantum efficiencies of virtually 100 %. However, due to the high refractive index of the commonly used semiconductor materials it is very difficult to have a large extraction efficiency; in a standard cubic geometry most of the internally emitted light is trapped inside the device due to total internal reflection. Several methods have been developed in order to circumvent this problem, either by optimizing the device geometry in order to increase the escape cone or by incorporating a resonant structure in order to force the internal emission into the existing escape cone. The latter approach is called microcavity LED (MCLED) or resonant cavity LED (RCLED). In a MCLED the spontaneous internal emission is controlled by placing the emitter inside an optical cavity with a thickness of the order of its emitting wavelength. The resulting interference effects increase the part of the emission that can be extracted. Contrary to the other approaches this is possible without changing the device geometry and thus without additional costly back-end processing steps. The control of the farfield radiation pattern makes these devices particularly interesting for high brightness applications, which demand highly directional emitters, such as for printing, bar code reading, large area displays and optical communication. The extraction efficiency of a MCLED is inversely proportional to the effective cavity length. An ideal cavity, allowing an extraction efficiency close to unity, consists of a low refractive index material and has an optical length of λ/2. In contrast to this, to obtain high internal quantum efficiencies it is necessary to use high index cavities with an optical length of at least λ. It should be noted, that the large penetration depth of the optical field in the semiconductor-based distributed Bragg reflectors (DBRs) leads to a significant increase of the effective cavity length and thus further reduces the achievable extraction efficiencies. In this thesis novel concepts to reduce effective cavity lengths and therefore increase extraction efficiencies are implemented into standard MCLED structures. The phaseshift cavity principle whilst maintaining the electrical properties of a standard A cavity achieves optical properties approaching that of a λ/2 cavity. The use of AlOx instead of AlAs as the, low refractive index component in the D