In mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms. More briefly, one may refer to quadratic, skew-quadratic, symmetric, and skew-symmetric forms, where "skew" means (−) and the * (involution) is implied. The theory is 2-local: away from 2, ε-quadratic forms are equivalent to ε-symmetric forms: half the symmetrization map (below) gives an explicit isomorphism. ε-symmetric forms and ε-quadratic forms are defined as follows. Given a module M over a -ring R, let B(M) be the space of bilinear forms on M, and let T : B(M) → B(M) be the "conjugate transpose" involution B(u, v) ↦ B(v, u). Since multiplication by −1 is also an involution and commutes with linear maps, −T is also an involution. Thus we can write ε = ±1 and εT is an involution, either T or −T (ε can be more general than ±1; see below). Define the ε-symmetric forms as the invariants of εT, and the ε-quadratic forms are the coinvariants. As an exact sequence, As kernel and cokernel, The notation Qε(M), Qε(M) follows the standard notation MG, MG for the invariants and coinvariants for a group action, here of the order 2 group (an involution). Composition of the inclusion and quotient maps (but not 1 − εT) as yields a map Qε(M) → Qε(M): every ε-symmetric form determines an ε-quadratic form. Conversely, one can define a reverse homomorphism "1 + εT": Qε(M) → Qε(M), called the symmetrization map (since it yields a symmetric form) by taking any lift of a quadratic form and multiplying it by 1 + εT. This is a symmetric form because (1 − εT)(1 + εT) = 1 − T2 = 0, so it is in the kernel. More precisely, .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (29)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Afficher plus
Publications associées (32)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.