Successful operation of motor imagery (MI)-based brain-computer interfaces (BCI) requires mutual adaptation between the human subject and the BCI. Traditional training methods, as well as more recent ones based on co-adaptation, have mainly focused on the machine-learning aspects of BCI training. This work presents a novel co-adaptive training protocol shifting the focus on subject-related performances and the optimal accommodation of the interactions between the two learning agents of the BCI loop. Preliminary results with 8 able-bodied individuals demonstrate that the proposed method has been able to bring 3 naive users into control of a MI BCI within a few runs and to improve the BCI performances of 3 experienced BCI users by an average of 0.36 bits/sec.
Mahsa Shoaran, Uisub Shin, Gregor Rainer, Mohammad Ali Shaeri, Amitabh Yadav
Olaf Blanke, José del Rocio Millán Ruiz, Ronan Boulic, Bruno Herbelin, Ricardo Andres Chavarriaga Lozano, Fumiaki Iwane
Friedhelm Christoph Hummel, Takuya Morishita, Pierre Theopistos Vassiliadis, Elena Beanato, Esra Neufeld, Fabienne Windel, Maximilian Jonas Wessel, Traian Popa, Julie Duqué