Informatique affectiveL’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.
Emotion recognitionEmotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Emotion classificationEmotion classification, the means by which one may distinguish or contrast one emotion from another, is a contested issue in emotion research and in affective science. Researchers have approached the classification of emotions from one of two fundamental viewpoints: that emotions are discrete and fundamentally different constructs that emotions can be characterized on a dimensional basis in groupings In discrete emotion theory, all humans are thought to have an innate set of basic emotions that are cross-culturally recognizable.
Émotionthumb|upright=1.8|Roue des émotions de Robert Plutchik.|alt= L'émotion est une expérience psychophysiologique complexe et intense (avec un début brutal et une durée relativement brève) de l'état d'esprit d'un individu animal liée à un objet repérable lorsqu'il réagit aux influences biochimiques (internes) et environnementales (externes). Chez les humains, l'émotion inclut fondamentalement « un comportement physiologique, des comportements expressifs et une conscience ».
Sciences affectivesLes sciences affectives forment un champ de recherche scientifique interdisciplinaire dans l'étude des émotions sur le modèle des sciences cognitives auxquelles elles appartiennent. Parmi les disciplines constitutives des sciences affectives, on peut citer : La psychologie, avec bien sûr la psychologie des émotions mais aussi de la cognition sociale La psychophysiologie Les neurosciences dont les neurosciences cognitives et neurosciences sociales L'informatique, tant sur le plan de la modélisation des phén
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Émotion (zoologie)vignette|Un dessin d'un chat par T. W. Wood dans le livre de Charles Darwin, The Expression of the Emotions in Man and Animals, décrit comme agissant «dans un état d'esprit affectueux» L'émotion en zoologie désigne les sentiments et émotions subjectifs éprouvés par des animaux non-humains. Les émotions peuvent être décrites comme des états conscients, subjectifs caractérisés premièrement par les expressions psychophysiologiques, les réactions biologiques, et les états mentaux.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.