Potentiel électrochimique de membraneToute cellule biologique est entourée d'une membrane dite membrane plasmique. Cette membrane est relativement imperméable aux espèces électriquement chargées telles que les ions et aux molécules qui peuvent participer à l'activité électrochimique (molécules polaires) telles que l'eau. Elle présente ainsi une grande résistance électrique et forme en quelque sorte un dipôle (comme un condensateur). Grâce à ces propriétés, la membrane sépare en deux compartiments étanches l'intérieur de la cellule, le cytoplasme, de l'extérieur de la cellule, le milieu extracellulaire.
Potentiel d'actionvignette|Le déplacement d'un potentiel d'action le long d'un axone, modifie la polarité de la membrane cellulaire. Les canaux ioniques sodium Na+ et potassium K+ voltage-dépendants s'ouvrent puis se ferment quand la membrane atteint le potentiel seuil, en réponse à un signal en provenance d'un autre neurone. À l'initiation du potentiel d'action, le canal Na+ s'ouvre et le Na+ extracellulaire rentre dans l'axone, provoquant une dépolarisation. Ensuite la repolarisation se produit lorsque le canal K+ s'ouvre et le K+ intracellulaire sort de l'axone.
Potentiel d'inversionLe potentiel d'inversion pour un canal ionique, ou plus généralement pour un courant ionique, est la valeur du potentiel de membrane pour laquelle le flux ionique est nul. Il s'agit en fait de la valeur de potentiel de membrane à laquelle une espèce ionique est en équilibre électro-osmotique. C’est-à-dire que pour ce potentiel de membrane, la force électrique due à la différence de potentiel de part et d'autre de la membrane et la force chimique due à la différence de concentration (ou force osmotique) sont égales et de sens opposés.
Transistor à effet de champ à grille métal-oxydethumb|right|235px|Photographie représentant deux MOSFET et une allumette Un transistor à effet de champ à grille isolée plus couramment nommé MOSFET (acronyme anglais de metal-oxide-semiconductor field-effect transistor — qui se traduit par transistor à effet de champ à structure métal-oxyde-semiconducteur), est un type de transistor à effet de champ. Comme tous les transistors, le MOSFET module le courant qui le traverse à l'aide d'un signal appliqué sur son électrode nommée grille.
Potentiel de reposLe potentiel de repos membranaire (RMP, pour l'anglais resting membrane potential) est le potentiel électrochimique de membrane de la membrane plasmique d'une cellule excitable lorsqu'elle est au repos ; c'est un des états possibles du potentiel de la membrane. En introduisant une électrode de mesure à l'intérieur de la cellule (voir la méthode de patch-clamp), on constate une différence de potentiel : la face interne de la membrane est négative par rapport à une électrode de référence placée sur la face externe de la membrane.
Potentiel postsynaptiqueUn potentiel postsynaptique (PPS), encore appelé potentiel gradué ou potentiel électro-tonique, est le signal unitaire produit en aval d'une synapse. Il s'agit d'un changement transitoire et local de la différence de potentiel électrochimique établie de part et d'autre de la membrane. La plaque motrice est la zone synaptique entre le neurone et la cellule musculaire. Le neurotransmetteur mis en jeu est l'acétylcholine qui va se fixer sur un récepteur et va ainsi entraîner une dépolarisation.
Canal sodiumUn canal sodium, ou sodique, est un canal ionique spécifique aux ions sodium. Il en existe de plusieurs types. Le premier à avoir été décrit est le canal sodique du potentiel d'action, responsable entre autres de la dépolarisation du neurone et du myocyte, de la propagation du signal nerveux et de la propagation de l'activation électrique du myocarde. thumb|Vue schématique du canal sodique La sous-unité Alpha constituée de quatre domaines et formant le pore central du canal ainsi que ses deux sous-unités béta Il faut différencier les canaux sodium stricts des canaux perméants aux cations, c’est-à-dire principalement sodium et potassium.
Channel blockerA channel blocker is the biological mechanism in which a particular molecule is used to prevent the opening of ion channels in order to produce a physiological response in a cell. Channel blocking is conducted by different types of molecules, such as cations, anions, amino acids, and other chemicals. These blockers act as ion channel antagonists, preventing the response that is normally provided by the opening of the channel.
Canal potassiqueEn biologie cellulaire, les canaux potassiques constituent le type le plus répandu de canal ionique et sont présents dans pratiquement tous les organismes vivants. Ils forment des pores traversant les membranes cellulaires et sont sélectifs aux ions potassium. On les trouve dans la plupart des types de cellules et ils contrôlent un large éventail de fonctions cellulaires. Dans les cellules excitables comme les neurones, ils sont responsables des potentiels d'action et définissent le potentiel membranaire de repos.
Canal tensiodépendantLes canaux tensiodépendants sont des canaux ioniques spécialisés qui s'ouvrent ou se ferment en réponse à une variation du potentiel de membrane. Les termes canal dépendant du voltage ou canal voltage dépendant, inspirés de la terminologie anglo-saxonne (voltage-dependant calcium channel), sont très souvent utilisés. L'adjectif tensiodépendant, proposé si récemment qu'il n'est même pas accessible par l'interrogation de NGramViewer (corpus de 2019), contrairement à dépendant du voltage ou dépendant du potentiel, est regrettable : en effet, il induit une confusion avec des canaux sensibles à la tension pris dans le sens d'étirement (stretch operated caclum channels).