Spectroscopie d’émission atomiquevignette|250x250px| Spectromètre d'émission atomique à plasma à couplage inductif La spectroscopie d'émission atomique (AES) est une méthode d'analyse chimique qui utilise l'intensité de la lumière émise par une flamme, un plasma, un arc ou une étincelle à une longueur d'onde particulière pour déterminer la quantité d'un élément dans un échantillon. La longueur d'onde de la raie spectrale atomique sur le spectre d'émission donne l'identité de l'élément tandis que l'intensité de la lumière émise est proportionnelle au nombre d'atomes de l'élément.
Spectrométrie d'absorption atomiquethumb|un spectromètre d'absorption atomique. En chimie analytique, la spectrométrie d'absorption atomique (Atomic absorption spectroscopy en anglais ou SAA) est une technique de spectroscopie atomique servant à déterminer la concentration des éléments métalliques (métaux alcalins, alcalino-terreux, métaux de transition) ainsi que les métalloïdes dans un échantillon. Ceux-ci sont atomisés à l'aide d'une flamme alimentée d'un mélange de gaz ou d'un four électromagnétique.
Résonance paramagnétique électroniquevignette|redresse=1.25|Spectromètre à résonance paramagnétique électronique La résonance paramagnétique électronique (RPE), résonance de spin électronique (RSE), ou en anglais electron spin resonance (ESR) désigne la propriété de certains électrons à absorber, puis réémettre l'énergie d'un rayonnement électromagnétique lorsqu'ils sont placés dans un champ magnétique. Seuls les électrons non appariés (ou électrons célibataires), présents dans des espèces chimiques radicalaires ainsi que dans les sels et complexes des métaux de transition, présentent cette propriété.
Rendement quantiqueLe rendement quantique (Φ) d'un processus induit par le rayonnement est égal au nombre de fois qu'un évènement donné arrive divisé par le nombre de photons absorbé par le système. L'évènement en question est souvent une réaction chimique. Dans une réaction de photolyse ou photodécomposition après l'absorption d'un photon, le rendement quantique est défini par : Le rendement quantique est aussi employé dans la modélisation de la photosynthèse : Aux réactions où chaque photon effectue la photolyse d'une seule molécule du réactif, le rendement quantique sera au maximum 1 et normalement inférieur à 1 à cause de pertes, tout comme le rendement chimique d'une réaction non photochimique.
Radioactivité βLa radioactivité β, radioactivité bêta ou émission bêta (symbole β) est, à l'origine, un type de désintégration radioactive dans laquelle une particule bêta (un électron ou un positon) est émise. On parle de désintégration bêta moins (β) ou bêta plus (β) selon qu'il s'agit de l'émission d'un électron (particule chargée négativement) ou d'un positon (particule chargée positivement). L'émission β est notamment ce qui permet la conversion d'un neutron en proton, par exemple dans les cas de transmutation comme du tritium (T) qui se transforme en hélium 3 (He) : ⟶ + e + .
Microscopie à fluorescenceLa microscopie en fluorescence (ou en épifluorescence) est une technique utilisant un microscope optique en tirant profit du phénomène de fluorescence et de phosphorescence, au lieu de, ou en plus de l'observation classique par réflexion ou absorption de la lumière visible naturelle ou artificielle. On peut ainsi observer divers objets, substances (organiques ou inorganiques) ou échantillons d'organismes morts ou vivants. Elle fait désormais partie des méthodes de recherche classiques et de la biologie et continue à se développer avec l'.
Spectroscopie infrarouge à transformée de FourierLa spectroscopie infrarouge à transformée de Fourier ou spectroscopie IRTF (ou encore FTIR, de l'anglais Fourier Transform InfraRed spectroscopy) est une technique utilisée pour obtenir le spectre d'absorption, d'émission, la photoconductivité ou la diffusion Raman dans l'infrarouge d'un échantillon solide, liquide ou gazeux. Un spectromètre FTIR permet de collecter simultanément les données spectrales sur un spectre large.
Chaîne de désintégrationvignette|Différents modes de désintégration radioactive : radioactivités α, β et β, capture électronique (ε), émission de neutron (n) et émission de proton (p). N et Z sont le nombre de neutrons et le nombre de protons des noyaux considérés. Une chaîne de désintégration, ou chaîne radioactive, ou série radioactive, ou désintégration en cascade, ou encore filiation radioactive, est une succession de désintégrations d'un radioisotope jusqu'à un élément chimique dont le noyau atomique est stable (par conséquent non radioactif), généralement le plomb (Pb), élément le plus lourd possédant des isotopes stables.
UracileL'uracile (usuellement noté "U") est une base nucléique (base pyrimidique) spécifique à l'ARN. On le trouve dans cet acide nucléique sous forme de nucléoside avec luridine et de nucléotide avec luridine monophosphate ou uridylate. Alors que dans l'ADN, l'adénine s'apparie avec la thymine (notée "T"), c'est l'uracile qui se lie à l'adénine dans l'ARN, par deux liaisons hydrogène. Il existe sous 7 formes tautomères dont 2 stéréoisomères (1,3H et 3,5H) et 5 tautomères avec au moins un groupe fonctionnel différent (7,8H, 3,8H, 5,8H, 5,7H et 3,7H : oxo- en hydroxy-).
AdénineL'adénine est un composé organique de formule brute C5H5N5, appartenant à la famille des purines. L'adénine est une molécule hétérocyclique, constituée d'un cycle possédant plusieurs atomes d'azote associés avec des atomes de carbone. L'adénine est une base nucléique entrant dans la constitution des nucléotides, composants de base (ou monomères) des acides nucléiques. On la trouve sous forme de nucléotide : dans l'ADN c'est la dAMP pour désoxyadénosine monophosphate ou désoxyadénylate, et dans l'ARN l'AMP pour adénosine monophosphate ou adénylate, ainsi que sous forme de nucléoside avec la désoxyadénosine et l'adénosine.