Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, we construct compactly supported radial basis functions that satisfy optimal approximation properties. Error estimates are determined by relating these basis functions to the class of Sobolev splines. Furthermore, we derive new rates for approximation by linear combinations of nonuniform translates of the Sobolev splines. Our results extend previous work as we obtain rates for basis functions of noninteger order, and we address approximation with respect to the L-infinity norm. We also use bandlimited approximation to determine rates for target functions with lower order smoothness.
Fabio Nobile, Yoshihito Kazashi, Fabio Zoccolan
Michael Christoph Gastpar, Sung Hoon Lim, Adriano Pastore, Chen Feng
,