HypergrapheLes hypergraphes sont des objets mathématiques généralisant la notion de graphe. Ils ont été nommés ainsi par Claude Berge dans les années 1960. Les hypergraphes généralisent la notion de graphe non orienté dans le sens où les arêtes ne relient plus un ou deux sommets, mais un nombre quelconque de sommets (compris entre un et le nombre de sommets de l’hypergraphe). Certains théorèmes de la théorie des graphes se généralisent naturellement aux hypergraphes, par exemple le théorème de Ramsey.
Droits des ÉtatsDans la politique aux États-Unis, le terme « droits des États » (states' rights) fait référence à la souveraineté individuelle des gouvernements des États américains vis-à-vis de l'État fédéral. La répartition des pouvoirs est déterminée par la Constitution, reflétant notamment les pouvoirs énumérés du Congrès et le Dixième amendement. La question des droits des États fut l'un des principaux arguments négationnistes du mouvement néo-confédéré, qui a cherché à légitimer a posteriori la « Cause perdue » de la Confédération, en niant le fait que l'esclavage fut la cause principale de la guerre de Sécession.
Partial cubeIn graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels.
Théorème de l'indice d'Atiyah-SingerEn mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique.