Concept

Théorème de l'indice d'Atiyah-Singer

Résumé
En mathématiques, et plus précisément en géométrie différentielle, le théorème de l'indice d'Atiyah-Singer, démontré par Michael Atiyah et Isadore Singer en 1963, affirme que pour un opérateur différentiel elliptique sur une variété différentielle compacte, l’indice analytique (lié à la dimension de l'espace des solutions) est égal à l’indice topologique (défini à partir d'invariants topologiques). De nombreux autres théorèmes, comme le théorème de Riemann-Roch, en sont des cas particuliers, et il a des applications en physique théorique. Le problème de l'indice pour des opérateurs différentiels elliptiques fut posé en 1959 par Israel Gelfand. Il remarqua l'invariance de l'indice par homotopie, et en demanda une formule n'utilisant que des invariants topologiques. Parmi les exemples motivant cette approche figuraient le théorème de Riemann-Roch et sa généralisation, le théorème de Hirzebruch-Riemann-Roch, ainsi que le . Hirzebruch et Borel avaient démontré que le d'une variété spin était entier, et Atiyah suggéra que cela s'expliquait si ce genre était l'indice de l' (qui avait été redécouvert par Atiyah et Singer en 1961). Le théorème de l'indice fut annoncé par Atiyah et Singer en 1963. La démonstration esquissée dans cette annonce ne fut jamais publiée par eux, mais fut développée en détail par les participants du séminaire Henri Cartan en 1963-64, puis parut dans le séminaire Palais en 1965. Leur première preuve publiée, en 1968, remplaçait la théorie du cobordisme par la K-théorie ; cela leur permit de démontrer diverses généralisations dans une série de publications échelonnées de 1968 à 1971. En 1973, Michael Atiyah, Raoul Bott et Vijay Kumar Patodi donnèrent une nouvelle démonstration du théorème de l'indice, utilisant l'équation de la chaleur (cette démonstration figure dans le livre de Melrose, publié en 1993). En 1983, , utilisant des idées d'Edward Witten et de , donna une démonstration courte du théorème de l'indice local pour des opérateurs qui sont localement des opérateurs de Dirac ; cela couvre la plupart des cas utiles en pratique.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.