Publication

Torsion homology of arithmetic lattices and K-2 of imaginary fields

Vincent Emery
2014
Article
Résumé

Let be a symmetric space of noncompact type. A result of Gelander provides exponential upper bounds in terms of the volume for the torsion homology of the noncompact arithmetic locally symmetric spaces . We show that under suitable assumptions on this result can be extended to the case of nonuniform arithmetic lattices that may contain torsion. Using recent work of Calegari and Venkatesh we deduce from this upper bounds (in terms of the discriminant) for of the ring of integers of totally imaginary number fields . More generally, we obtain such bounds for rings of -integers in F.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.