Résumé
En mathématiques, l'homologie est une manière générale d'associer une séquence d'objets algébriques tels que des groupes abéliens ou des modules à d'autres objets mathématiques tels que des espaces topologiques. Les groupes d'homologie ont été définis à l'origine dans la topologie algébrique. Des constructions similaires sont disponibles dans beaucoup d'autres contextes, tels que l'algèbre abstraite, les groupes, les algèbres de Lie, la théorie de Galois et la géométrie algébrique. La motivation initiale pour définir les groupes d'homologie était l'observation que deux formes peuvent être distinguées en examinant leurs trous. Par exemple, un cercle n'est pas un disque car le cercle est perforé alors que le disque est solide et la sphère n'est pas un cercle car la sphère renferme un trou bidimensionnel alors que le cercle renferme un trou unidimensionnel. Cependant, étant donné qu’un trou n’est "pas là", la définition d'un trou et comment distinguer différents types de trous n'est pas évident. L'homologie était à l'origine une méthode mathématique rigoureuse pour définir et classer les trous dans une variété. En gros, un cycle est une sous-variété fermée, une limite est un cycle qui est également la limite d'une sous-variété et une classe d'homologie (qui représente un trou) est une classe d'équivalence de cycles modulo une limite. Une classe d'homologie est donc représentée par un cycle qui n'est la limite d'aucune sous-variété: le cycle représente un trou, à savoir une variété hypothétique dont la limite serait ce cycle, mais qui "n'est pas là". Il existe de nombreuses théories d'homologie. Un type particulier d'objet mathématique, tel qu'un espace topologique ou un groupe, peut avoir une ou plusieurs théories d'homologie associées. Lorsque l'objet sous-jacent a une interprétation géométrique, à l'instar des espaces topologiques, le n-ième groupe d'homologie représente le comportement dans la dimension n . La plupart des groupes d'homologie ou des modules peuvent être formulés en tant que foncteurs dérivés sur des catégories abéliennes appropriées, en mesurant l'incapacité d'un foncteur à être exact.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.