Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.
Matthias Wolf, Henry Markram, Felix Schürmann, Eilif Benjamin Muller, Srikanth Ramaswamy, Michael Reimann, Daniel Keller, Werner Alfons Hilda Van Geit, James Gonzalo King, Pramod Shivaji Kumbhar, Alexis Arnaudon, Jean-Denis Georges Emile Courcol, Rajnish Ranjan, Armando Romani, András Ecker, Michael Emiel Gevaert, Vishal Sood, Sirio Bolaños Puchet, James Bryden Isbister, Judit Planas Carbonell, Daniela Egas Santander, Maria Reva, Genrich Ivaska, Natali Barros Zulaica, Mustafa Anil Tuncel, Christoph Pokorny, Elvis Boci, Jorge Blanco Alonso, Aleksandra Zuzanna Teska, Darshan Mandge, Polina Litvak, Gianluca Ficarelli, Weina Ji, Giuseppe Chindemi, Christian Andreas Rössert, Omar Awile, Joni Henrikki Herttuainen, Samuel Lieven D. Lapere, Thomas Brice Delemontex, Tanguy Pierre Louis Damart, Alexander Dietz
Henry Markram, Rodrigo de Campos Perin