Complexité de KolmogorovEn informatique théorique et en mathématiques, plus précisément en théorie de l'information, la complexité de Kolmogorov, ou complexité aléatoire, ou complexité algorithmique d'un objet — nombre, , chaîne de caractères — est la taille du plus petit algorithme (dans un certain langage de programmation fixé) qui engendre cet objet. Elle est nommée d'après le mathématicien Andreï Kolmogorov, qui publia sur le sujet dès 1963. Elle est aussi parfois nommée complexité de Kolmogorov-Solomonoff.
HypercalculLe terme hypercalcul désigne les différentes méthodes proposées pour le calcul de fonctions non-Turing-calculables. Il a été initialement introduit par Jack Copeland. On emploie également le terme de calcul super-Turing, bien que celui d'hypercalcul puisse être connoté de la séduisante possibilité qu'une telle machine soit physiquement réalisable. Certains modèles ont été proposés, comme des réseaux de neurones avec des nombres réels en guise de poids, la capacité de conduire une infinité de calculs simultanément ou encore l'aptitude à effectuer des opérations non Turing-calculables, telles que des limites ou des intégrations.
Dilemme biais-varianceEn statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).
Ridge regressionRidge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. It has been used in many fields including econometrics, chemistry, and engineering. Also known as Tikhonov regularization, named for Andrey Tikhonov, it is a method of regularization of ill-posed problems. It is particularly useful to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models with large numbers of parameters.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Consolidation informatiqueLa consolidation est en informatique le regroupement cohérent de données. Elle concerne généralement des données organisées logiquement ou liées entre elles. Plus spécifiquement pour les tableurs, il s’agit du regroupement de plusieurs tableaux issus de feuilles différentes (les feuilles sont des composantes des tableurs) voire de classeurs différents. La consolidation de données consiste à rassembler plusieurs données semblables afin d’obtenir un rapport plus facile à consulter que l’information brute présente sur le serveur, avec le moins de perte d’information possible.
Gestion des donnéesLa gestion des données est une discipline de gestion qui tend à valoriser les données en tant que ressources numériques. La gestion des données permet d'envisager le développement d'architectures, de réglementations, de pratiques et de procédures qui gèrent correctement les besoins des organismes sur le plan de tout le cycle de vie des données. Les données sont, avec les traitements, l'un des deux aspects des systèmes d'information traditionnellement identifiés, et l'un ne peut aller sans l'autre pour un management du système d'information cohérent.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Fonction convexevignette|upright=1.5|droite|Fonction convexe. En mathématiques, une fonction réelle d'une variable réelle est dite convexe : si quels que soient deux points et du graphe de la fonction, le segment est entièrement situé au-dessus du graphe, c’est-à-dire que la courbe représentative de la fonction se situe toujours en dessous de ses cordes ; ou si l'épigraphe de la fonction (l'ensemble des points qui sont au-dessus de son graphe) est un ensemble convexe ; ou si vu d'en dessous, le graphe de la fonction est en bosse.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.