vignette|upright=1.5|droite|Fonction convexe.
En mathématiques, une fonction réelle d'une variable réelle est dite convexe :
si quels que soient deux points et du graphe de la fonction, le segment est entièrement situé au-dessus du graphe, c’est-à-dire que la courbe représentative de la fonction se situe toujours en dessous de ses cordes ;
ou si l'épigraphe de la fonction (l'ensemble des points qui sont au-dessus de son graphe) est un ensemble convexe ;
ou si vu d'en dessous, le graphe de la fonction est en bosse.
En précisant au moyen des valeurs de la fonction ce que sont les points et ci-dessus, on obtient une définition équivalente souvent donnée de la convexité d'une fonction : une fonction définie sur un intervalle réel est convexe lorsque, pour tous et de et tout dans on a :
Lorsque l'inégalité est stricte (avec différent de et dans ), on parle de fonction strictement convexe.
La fonction carré et la fonction exponentielle sont des exemples de fonctions strictement convexes sur l'ensemble réel .
Ces définitions se généralisent aux fonctions définies sur un espace vectoriel (ou affine) arbitraire et à valeurs dans la droite réelle achevée .
À l'inverse, une fonction dont un même segment est situé en dessous du graphe, ou dont l'hypographe (l'ensemble des points qui sont en dessous du graphe de la fonction) est un ensemble convexe, ou encore dont, vu d'en dessous, le graphe est en creux, est dite concave. En d'autres termes, une fonction est concave si son opposée est convexe. Ainsi, les fonctions affines sont à la fois convexes et concaves.
Les fonctions convexes sont, avec les ensembles convexes, les objets constitutifs de l'analyse convexe, une discipline « intermédiaire » entre l'algèbre linéaire et l'analyse non linéaire. Elles permettent de démontrer un grand nombre d'inégalités remarquables, dites inégalités de convexité. Elles jouent aussi un rôle singulier en optimisation, en supprimant la distinction entre minima locaux et globaux (tout minimum local d'une fonction convexe est un minimum global).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
En mathématiques, une fonction f est dite concave lorsque la fonction opposée –f est convexe. Le fait que l'on préfère commencer par définir la notion de fonction convexe et d'en déduire celle de fonction concave trouve son origine dans le fait que l'on définit aisément la notion d'ensemble convexe, alors que celle d'« ensemble concave » est moins naturelle. On définit alors les fonctions convexes comme celles ayant un épigraphe convexe (les fonctions concaves ont un hypographe convexe).
En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.
L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
. We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W1,1 solutions are necessarily W 1,2 Nash and Schauder applicable. We answer this question positively for a suitable clas ...
This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
This code is used for developing the project entitled “Study on conformal antennas, proof of concept prototype for a UAV”, from the aspects of theory, design, and implementation. This code aims to speed up the investigation of an arbitrary phased array ant ...