Électron de valenceUn électron de valence est un électron situé dans la couche de valence d'un atome. Les propriétés physiques d'un élément sont largement déterminées par leur configuration électronique, notamment la configuration de la couche de valence. La présence d'un ou plusieurs électrons de valence joue un rôle important dans cette définition des car elle permet de déterminer la valence . Lorsqu'un atome a une couche de valence incomplète, il peut partager ou donner des électrons de valence avec d'autres atomes pour remplir sa couche externe et former une liaison chimique stable.
Quantum wireIn mesoscopic physics, a quantum wire is an electrically conducting wire in which quantum effects influence the transport properties. Usually such effects appear in the dimension of nanometers, so they are also referred to as nanowires. If the diameter of a wire is sufficiently small, electrons will experience quantum confinement in the transverse direction. As a result, their transverse energy will be limited to a series of discrete values.
Band diagramIn solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. These diagrams help to explain the operation of many kinds of semiconductor devices and to visualize how bands change with position (band bending). The bands may be coloured to distinguish level filling. A band diagram should not be confused with a band structure plot.
Arséniure de gallium-indiumL'arséniure d'indium-gallium (InGaAs) (ou arséniure de gallium-indium, GaInAs) est un alliage ternaire (composé chimique) d'arséniure d'indium (InAs) et d'arséniure de gallium (GaAs). L'indium et le gallium sont des éléments du (groupe III) du tableau périodique tandis que l'arsenic est un élément du (groupe V). Les alliages de ces éléments chimiques sont appelés composés "III-V". InGaAs a des propriétés intermédiaires entre celles de GaAs et de InAs. InGaAs est un semi-conducteur à température ambiante avec des applications en électronique et en photonique.
Transistor à effet de champUn transistor à effet de champ (en anglais, Field-effect transistor ou FET) est un dispositif semi-conducteur de la famille des transistors. Sa particularité est d'utiliser un champ électrique pour contrôler la forme et donc la conductivité d'un « canal » dans un matériau semiconducteur. Il concurrence le transistor bipolaire dans de nombreux domaines d'applications, tels que l'électronique numérique. Le premier brevet sur le transistor à effet de champ a été déposé en 1925 par Julius E. Lilienfeld.
Membrane plasmiqueLa membrane plasmique, également appelée membrane cellulaire, membrane cytoplasmique, voire plasmalemme, est une membrane biologique séparant l'intérieur d'une cellule, appelé cytoplasme, de son environnement extérieur, c'est-à-dire du milieu extracellulaire. Cette membrane joue un rôle biologique fondamental en isolant la cellule de son environnement.
Carrier generation and recombinationIn the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.
Détecteur à semi-conducteurUn détecteur à semi-conducteur est un détecteur de particules ou de rayons X ou gamma qui s'appuie sur la technologie des semi-conducteurs. Une particule ayant une énergie suffisante, rencontrant un semi-conducteur, va arracher un électron à un atome du cristal en lui cédant une partie ou la totalité de son énergie sous forme d'énergie potentielle (ionisation) et cinétique. Par exemple, un photon créera des électrons libres dans le milieu par effet photoélectrique, effet Compton ou création de paires.
Performances (informatique)En informatique, les performances énoncent les indications chiffrées mesurant les possibilités maximales ou optimales d'un matériel, d'un logiciel, d'un système ou d'un procédé technique pour exécuter une tâche donnée. Selon le contexte, les performances incluent les mesures suivantes : Un faible temps de réponse pour effectuer une tâche donnée Un débit élevé (vitesse d'exécution d'une tâche) L'efficience : faible utilisation des ressources informatiques : processeur, mémoire, stockage, réseau, consommation électrique, etc.
Membrane fluidityIn biology, membrane fluidity refers to the viscosity of the lipid bilayer of a cell membrane or a synthetic lipid membrane. Lipid packing can influence the fluidity of the membrane. Viscosity of the membrane can affect the rotation and diffusion of proteins and other bio-molecules within the membrane, there-by affecting the functions of these things. Membrane fluidity is affected by fatty acids. More specifically, whether the fatty acids are saturated or unsaturated has an effect on membrane fluidity.