Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Masse volumiqueLa masse volumique d'une substance, aussi appelée volumique de masse, est une grandeur physique qui caractérise la masse de cette substance par unité de volume. C'est l'inverse du volume massique. La masse volumique est synonyme des expressions désuètes « densité absolue », « densité propre », ou encore « masse spécifique ». Cette grandeur physique est généralement notée par les lettres grecques ρ (rhô) ou μ (mu). Leur usage dépend du domaine de travail. Toutefois, le BIPM recommande d'utiliser la notation ρ.
RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.
Théorie de l'orbitale moléculaireLa théorie de l'orbitale moléculaire (TOM) est un des socles de la chimie théorique du . Jusqu'alors les chimistes théoriciens étaient prisonniers des succès du modèle de la liaison covalente de Lewis. Les méthodes spectroscopiques du montrent les limites de l'idée de liaisons localisées en résolvant des structures chimiques jusque-là inédites. Par exemple la mésomérie ou résonance était vue, à tort, comme le passage rapide d'une conformation à une autre (résonance de Kekulé), ce qui n'était pas vérifié ni dans le spectre infrarouge ni dans la réactivité de molécules comme le benzène.
Énergie potentielleL'énergie potentielle d'un système physique est l'énergie liée à une interaction, qui a la capacité de se transformer en d'autres formes d'énergie, le plus souvent en énergie cinétique, une énergie de mouvement. La force qui modélise l'interaction est une force conservative c'est-à-dire que son travail ne dépend pas du chemin suivi lors du déplacement, mais uniquement du point de départ et du point d'arrivée : .
Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.
Liquide de FermiUn liquide de Fermi est un état quantique de la matière, observé à basse température pour la plupart des solides cristallins bi- et tridimensionnels et dans l'Hélium 3 liquide. Il se caractérise macroscopiquement par des propriétés thermodynamiques, magnétiques, et de transport (ex : conductivité électrique) universelles et correspondant à celles d'un gaz de quasi-particules ayant le même spin-1/2, la même charge, et le même volume sous la surface de Fermi que les électrons (ou les atomes d'Hélium 3), mais une masse renormalisée portant le nom de « masse effective », ainsi que des interactions résiduelles.
Densité surfacique d'énergieLa densité surfacique d'énergie ou énergie surfacique, voire densité énergétique (quand le contexte surfacique est clair), est la quantité d’énergie par une unité de surface. Dans le Système international elle se mesure en J/m (joules par mètre carré). Dans un contexte industriel on l'exprime souvent en kWh/m (kilowatts-heures par mètre carré). Cette grandeur physique est principalement utilisée dans l'étude physique des interfaces entre liquides non miscibles, ou entre liquide et gaz, où elle caractérise l'énergie nécessaire à former une interface d'une certaine surface.
Orbitale moléculairevignette|Orbitales moléculaires du 1,3-butadiène, montrant les deux orbitales occupées à l'état fondamental : π est liante entre tous les atomes, tandis que π n'est liante qu'entre les atomes C et C ainsi qu'entre les atomes C et C, et est antiliante entre C et C. En chimie quantique, une orbitale moléculaire est une fonction mathématique décrivant le comportement ondulatoire d'un électron dans une molécule.