Vague scélératevignette|300px|droite|Vague scélérate vue d’un navire marchand (1940, golfe de Gascogne, ligne de sonde des ). Les vagues scélérates sont des vagues océaniques très hautes, soudaines, considérées comme très rares. Cette rareté est relative, les observations ne concernant qu'une très faible partie d'entre elles, compte tenu de l'étendue des océans et de la rapidité avec laquelle les vagues se forment et se défont au sein des trains de vagues où elles se propagent.
Équation aux dérivées partielles elliptiqueEn mathématiques, une équation aux dérivées partielles linéaire du second ordre, dont la forme générale est donnée par : est dite elliptique en un point donné x de l'ouvert U si la matrice carrée symétrique des coefficients du second ordre admet des valeurs propres non nulles et de même signe. En physique, les équations de Laplace, et de Poisson pour le potentiel électrostatique respectivement dans le vide et pour la distribution de charges sont de type elliptique.
Fonction de HeavisideEn mathématiques, la fonction de Heaviside (également fonction échelon unité, fonction marche d'escalier), du nom d’Oliver Heaviside, est la fonction indicatrice de . C'est donc la fonction H (discontinue en 0) prenant la valeur 1 pour tous les réels strictement positifs et la valeur 0 pour les réels strictement négatifs. En 0, sa valeur n'a généralement pas d'importance, même si souvent elle vaut 1/2. C'est une primitive de la distribution de Dirac en théorie des distributions.
Poussée d'Archimèdevignette|La poussée d'Archimède permet de concevoir la balance hydrostatique utilisée par les orfèvres du Moyen Âge pour analyser la densité des alliages d'or et d'argent. vignette|Les montgolfières exploitent le principe de la poussée d'Archimède, en devenant plus légères que l’air ambiant. La poussée d'Archimède est la force particulière que subit un corps placé entièrement ou partiellement dans un fluide (liquide ou gaz) et soumis à un champ de gravité.
Laplacian of the indicatorIn mathematics, the Laplacian of the indicator of the domain D is a generalisation of the derivative of the Dirac delta function to higher dimensions, and is non-zero only on the surface of D. It can be viewed as the surface delta prime function. It is analogous to the second derivative of the Heaviside step function in one dimension. It can be obtained by letting the Laplace operator work on the indicator function of some domain D.