Splitting Methods with Modified Potentials and Application to the Damped Wave Equation
Publications associées (100)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Global spectral methods offer the potential to compute solutions of partial differential equations numerically to very high accuracy. In this work, we develop a novel global spectral method for linear partial differential equations on cubes by extending th ...
Explicit stabilized integrators are an efficient alternative to implicit or semi-implicit methods to avoid the severe timestep restriction faced by standard explicit integrators applied to stiff diffusion problems. In this paper, we provide a fully discret ...
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
Accurately estimating 3D human pose (3D HPE) and joint locations using only 2D keypoints is challenging. The noise in the predictions produced by conventional 2D human pose estimators often impeded the accuracy. In this paper, we present a diffusion-based ...
Stabilized Runge???Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge???Kutta me ...
We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradien ...
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after e ...
Stabilized Runge–Kutta (aka Chebyshev) methods are especially efficient for the numerical solution of large systems of stiff differential equations because they are fully explicit; hence, they are inherently parallel and easily accommodate nonlinearity. Fo ...
Using a variational method, we prove the existence of heteroclinic solutions for a 6-dimensional system of ordinary differential equations. We derive this system from the classical Benard-Rayleigh problem near the convective instability threshold. The cons ...