Coût marginalLe coût marginal est le coût induit par une variation de l'activité. Pour les économistes, cette variation peut être infinitésimale, et le coût marginal est alors la dérivée de la fonction de coût. Pour les comptables, le coût marginal est défini comme la variation du coût engendrée par la production ou la vente d'une unité supplémentaire (ce qui est plus concret qu'un calcul de dérivée). Dans la réalité du monde de l'entreprise, la variation d'activité correspond généralement à une commande supplémentaire (qui peut donc porter sur un lot de plusieurs produits).
Cost curveIn economics, a cost curve is a graph of the costs of production as a function of total quantity produced. In a free market economy, productively efficient firms optimize their production process by minimizing cost consistent with each possible level of production, and the result is a cost curve. Profit-maximizing firms use cost curves to decide output quantities. There are various types of cost curves, all related to each other, including total and average cost curves; marginal ("for each additional unit") cost curves, which are equal to the differential of the total cost curves; and variable cost curves.
Total costIn economics, total cost (TC) is the minimum dollar cost of producing some quantity of output. This is the total economic cost of production and is made up of variable cost, which varies according to the quantity of a good produced and includes inputs such as labor and raw materials, plus fixed cost, which is independent of the quantity of a good produced and includes inputs that cannot be varied in the short term such as buildings and machinery, including possibly sunk costs.
Base de GröbnerEn mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Champ de force (chimie)vignette|Un champ de force peut par exemple être utilisé afin de minimiser l'énergie d'étirement de cette molécule d'éthane. Dans le cadre de la mécanique moléculaire, un champ de force est un ensemble de potentiels et de paramètres permettant de décrire la structure de l'énergie potentielle d'un système de particules (typiquement, des atomes, mais non exclusivement). L'usage de l'expression champ de force en chimie et biologie numériques diffère ainsi de celui de la physique, où il indique en général un gradient négatif d'un potentiel scalaire.
Théorème de la base de HilbertIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian. If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally, Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring. Corollary. If is a Noetherian ring, then is a Noetherian ring.
Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.
Base (algèbre linéaire)vignette|Le même vecteur peut être représenté dans deux bases différentes (flèches violettes et rouges). En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V. alt=|vignette|upright=2|. La géométrie plane, celle d'Euclide, peut comporter une approche algébrique, celle de Descartes.
Élément maximalDans un ensemble ordonné, un élément maximal est un élément tel qu'il n'existe aucun autre élément de cet ensemble qui lui soit supérieur, c'est-à-dire que a est dit élément maximal d'un ensemble ordonné (E, ≤) si a est un élément de E tel que : De même, a est un élément minimal de E si : Pour tout élément a de E, on a les équivalences et l'implication (stricte) : a est un majorant de E ⇔ a est la borne supérieure de E ⇔ a est l'élément maximum (ou « plus grand élément ») de E ⇒ a est l'unique élément maxima