Neurofeedback therapies are an emerging technique used to treat neuropsychological disorders and to enhance cognitive performance. The feedback stimuli presented during the therapy are a key factor, serving as guidance throughout the entire learning process of the brain rhythms. Online decoding of these stimuli could be of great value to measure the compliance and adherence of the subject to the training. This paper describes the modeling and classification of performance feedback potentials with a Brain-Computer Interface (BCI), under a real neurofeedback training with five subjects. LDA and SVM classification techniques are compared and are both able to provide an average performance of approximately 80%.
Olaf Blanke, José del Rocio Millán Ruiz, Ronan Boulic, Bruno Herbelin, Ricardo Andres Chavarriaga Lozano, Fumiaki Iwane
Friedhelm Christoph Hummel, Takuya Morishita, Pierre Theopistos Vassiliadis, Elena Beanato, Esra Neufeld, Fabienne Windel, Maximilian Jonas Wessel, Traian Popa, Julie Duqué
David Atienza Alonso, Giovanni Ansaloni, José Angel Miranda Calero, Jonathan Dan, Amirhossein Shahbazinia, Flavio Ponzina