Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
We propose a new variational framework for the problem of reconstructing flow fields from noisy measurements. The formalism is based on regularizers penalizing the singular values of the Jacobian of the field. Specifically, we rely on the nuclear norm. Our method is invariant with respect to fundamental transformations and can be efficiently solved. We conduct numerical experiments on several phantom data and report improved performance compared to existing vectorial extensions of total variation and curl-divergence regularizations. Finally, we apply our reconstruction method to an experimentally-acquired phase-contrast MRI recording for enhancing the data visualization.