Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
ViscoélasticitéLa viscoélasticité est la propriété de matériaux qui présentent des caractéristiques à la fois visqueuses et élastiques, lorsqu'ils subissent une déformation. Les matériaux visqueux, comme le miel, résistent bien à un écoulement en cisaillement et présentent une déformation qui augmente linéairement avec le temps lorsqu'une contrainte est appliquée. Les matériaux élastiques se déforment lorsqu'ils sont contraints, et retournent rapidement à leur état d'origine une fois la contrainte retirée.
Hurst exponentThe Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases. Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time.
Exposant critiqueLors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
Geometric Brownian motionA geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
InertieEn physique, l'inertie d'un corps, dans un référentiel galiléen (dit inertiel), est sa tendance à conserver sa vitesse : en l'absence d'influence extérieure, tout corps ponctuel perdure dans un mouvement rectiligne uniforme. L'inertie est aussi appelée principe d'inertie, ou loi d'inertie, et, depuis Newton, première loi de Newton. La loi d'inertie exprime le fait que si la vitesse du corps ponctuel par rapport au repère galiléen est constante, « la somme des forces s'exerçant sur le corps est nulle ».
Fluide newtonienOn appelle fluide newtonien (en hommage à Isaac Newton) un fluide dont la loi contrainte – vitesse de déformation est linéaire. La constante de proportionnalité est appelée viscosité. Viscosité L’équation décrivant le « comportement newtonien » en description eulérienne est : où : est la contrainte de cisaillement exercée par le fluide (à l'origine des forces de traînée), exprimée en Pa ; est la viscosité dynamique du fluide — une constante de proportionnalité caractéristique du matériau, en ; est le gradient de vitesse perpendiculaire à la direction de cisaillement, en s−1.
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Percolation critical exponentsIn the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered.
Invariance d'échelleIl y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système. Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se place. Une fonction g est dite invariante d'échelle s'il existe une fonction telle que pour tout x et y : Alors, il existe une constante et un exposant , tels que : En physique, l'invariance d'échelle n'est valable que dans un domaine de taille limité — par exemple, pour un ensemble fractal, on ne peut pas se placer à une échelle plus petite que celle des molécules, ni plus grande que la taille du système.