Résumé
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model. A stochastic process St is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants. The former parameter is used to model deterministic trends, while the latter parameter models unpredictable events occurring during the motion. For an arbitrary initial value S0 the above SDE has the analytic solution (under Itô's interpretation): The derivation requires the use of Itô calculus. Applying Itô's formula leads to where is the quadratic variation of the SDE. When , converges to 0 faster than , since . So the above infinitesimal can be simplified by Plugging the value of in the above equation and simplifying we obtain Taking the exponential and multiplying both sides by gives the solution claimed above. The process for , satisfying the SDE or more generally the process solving the SDE where and are real constants and for an initial condition , is called an Arithmetic Brownian Motion (ABM). This was the model postulated by Louis Bachelier in 1900 for stock prices, in the first published attempt to model Brownian motion, known today as Bachelier model. As was shown above, the ABM SDE can be obtained through the logarithm of a GBM via Itô's formula. Similarly, a GBM can be obtained by exponentiation of an ABM through Itô's formula.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (9)
Personnes associées (1)
Concepts associés (16)
Mathématiques financières
Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
Équation différentielle stochastique
Une équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Geometric Brownian motion
A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.
Afficher plus
Cours associés (15)
MATH-470: Martingales in financial mathematics
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
MATH-330: Martingales et mouvement brownien
Introduction à la théorie des martingales à temps discret, en particulier aux théorèmes de convergence et d'arrêt. Application aux processus de branchement. Introduction au mouvement brownien et étude
MATH-431: Theory of stochastic calculus
Introduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F
Afficher plus
MOOCs associés (4)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Path Integral Methods in Atomistic Modelling
The course provides an introduction to the use of path integral methods in atomistic simulations. The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Afficher plus