Publication

Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets

Résumé

We analyze the stability and accuracy of discrete least squares on multivariate polynomial spaces to approximate a given function depending on a multivariate random variable uniformly distributed on a hypercube. The polynomial approximation is calculated starting from pointwise noise-free evaluations of the target function at low-discrepancy point sets. We prove that the discrete least-squares approximation, in a multivariate anisotropic tensor product polynomial space and with evaluations at low-discrepancy point sets, is stable and accurate under the condition that the number of evaluations is proportional to the square of the dimension of the polynomial space, up to logarithmic factors. This result is analogous to those obtained in Cohen et al. (2013), Migliorati et al. (2014), Migliorati (2013) and Chkifa et al. (in press) for discrete least squares with random point sets, however it holds with certainty instead of just with high probability. The result is further generalized to arbitrary polynomial spaces associated with downward closed multi-index sets, but with a more demanding (and probably nonoptimal) proportionality between the number of evaluation points and the dimension of the polynomial space.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.