Isomorphisme de graphesEn mathématiques, dans le cadre de la théorie des graphes, un isomorphisme de graphes est une bijection entre les sommets de deux graphes qui préserve les arêtes. Ce concept est en accord avec la notion générale d'isomorphisme, une bijection qui préserve les structures. Plus précisément, un isomorphisme f entre les graphes G et H est une bijection entre les sommets de G et ceux de H, telle qu'une paire de sommets {u, v} de G est une arête de G si et seulement si {ƒ(u), ƒ(v)} est une arête de H.
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Mineur (théorie des graphes)La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de .
List edge-coloringIn mathematics, list edge-coloring is a type of graph coloring that combines list coloring and edge coloring. An instance of a list edge-coloring problem consists of a graph together with a list of allowed colors for each edge. A list edge-coloring is a choice of a color for each edge, from its list of allowed colors; a coloring is proper if no two adjacent edges receive the same color. A graph G is k-edge-choosable if every instance of list edge-coloring that has G as its underlying graph and that provides at least k allowed colors for each edge of G has a proper coloring.
List of graphsThis partial list of graphs contains definitions of graphs and graph families. For collected definitions of graph theory terms that do not refer to individual graph types, such as vertex and path, see Glossary of graph theory. For links to existing articles about particular kinds of graphs, see . Some of the finite structures considered in graph theory have names, sometimes inspired by the graph's topology, and sometimes after their discoverer.
Total coloringIn graph theory, total coloring is a type of graph coloring on the vertices and edges of a graph. When used without any qualification, a total coloring is always assumed to be proper in the sense that no adjacent edges, no adjacent vertices and no edge and either endvertex are assigned the same color. The total chromatic number χ′′(G) of a graph G is the fewest colors needed in any total coloring of G.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Chaîne (théorie des graphes)Dans un graphe non orienté, une chaîne reliant à , notée , est définie par une suite finie d'arêtes consécutives, reliant à . La notion correspondante dans les graphes orientés est celle de chemin. Une chaîne élémentaire est une chaîne ne passant pas deux fois par un même sommet, c'est-à-dire dont tous les sommets sont distincts. Une chaîne simple est une chaîne ne passant pas deux fois par une même arête, c'est-à-dire dont toutes les arêtes sont distinctes. Un cycle est une chaîne simple dont les deux extrémités sont identiques.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Conjecture de HadwigerEn théorie des graphes, la conjecture de Hadwiger est une conjecture très générale sur les problèmes de coloration de graphes. Formulée en 1943 par Hugo Hadwiger, elle énonce que si le graphe complet à k sommets, noté , n'est pas un mineur d'un graphe , alors il est possible de colorer les sommets de avec couleurs. Hadwiger a prouvé les cas dans le même article qui formule la conjecture. Wagner a prouvé en 1937 que le cas est équivalent au théorème des quatre couleurs, et la démonstration en 1976 par Appel et Haken du théorème des quatre couleurs a donc prouvé en même temps la conjecture de Hadwiger pour le cas .