Pouvoir rotatoireLe pouvoir rotatoire, est l'angle de déviation du plan de polarisation d'une lumière polarisée rectilignement, pour un observateur situé en face du faisceau incident. Il est lié à l'activité optique ou biréfringence circulaire, qui est la propriété qu'ont certains milieux (optiquement actifs) de faire tourner le vecteur d'un faisceau lumineux les traversant. Parfois, par abus de langage, le terme de pouvoir rotatoire est employé à la place d'activité optique.
Module d'élasticitéUn module d'élasticité (ou module élastique ou module de conservation) est une grandeur intrinsèque d'un matériau, définie par le rapport d'une contrainte à la déformation élastique provoquée par cette contrainte. Les déformations étant sans dimension, les modules d'élasticité sont homogènes à une pression et leur unité SI est donc le pascal ; en pratique on utilise plutôt un multiple, le ou le . Le comportement élastique d'un matériau homogène isotrope et linéaire est caractérisé par deux modules (ou constantes) d'élasticité indépendants.
Module de cisaillementEn résistance des matériaux, le module de cisaillement, module de glissement, module de rigidité, module de Coulomb ou second coefficient de Lamé, est une grandeur physique intrinsèque à chaque matériau et qui intervient dans la caractérisation des déformations causées par des efforts de cisaillement. La définition du module de rigidité , parfois aussi noté μ, estoù (voir l'image ci-contre) est la contrainte de cisaillement, la force, l'aire sur laquelle la force agit, le déplacement latéral relatif et l'écart à l'angle droit, le déplacement latéral et enfin l'épaisseur.
Module de YoungLe module de Young, module d’élasticité (longitudinale) ou module de traction est la constante qui relie la contrainte de traction (ou de compression) et le début de la déformation d'un matériau élastique isotrope. Dans les ouvrages scientifiques utilisés dans les écoles d'ingénieurs, il a été longtemps appelé module d'Young. Le physicien britannique Thomas Young (1773-1829) avait remarqué que le rapport entre la contrainte de traction appliquée à un matériau et la déformation qui en résulte (un allongement relatif) est constant, tant que cette déformation reste petite et que la limite d'élasticité du matériau n'est pas atteinte.
Effet FaradayEn physique, l'effet Faraday décrit l'interaction entre la lumière et un champ magnétique dans un matériau : la polarisation de la lumière effectue une rotation proportionnelle à la composante du champ magnétique sur la direction de propagation de la lumière. L'effet Faraday est un effet magnéto-optique découvert par Michael Faraday en 1845. Il apparaît dans la plupart des matériaux diélectriques transparents lorsqu'ils sont soumis à des champs magnétiques.
Effet Pockelsvignette|Travail d'une durée de cinq semaines sur un projet expérimental basé sur l’effet Pockels qui est un effet électro-optique permettant la modulation optique grâce au phénomène physique de biréfringence présent au sein de certains matériaux et permet la modulation externe de l’intensité, phase ou la polarisation d’une onde lumineuse. En effet, il s'agit de l'apparition d'une biréfringence dans un milieu créée par un champ électrique statique ou variable. Cette dernière est proportionnelle au champ électrique.
Porteur de chargeUn porteur de charge est, en sciences physiques, une particule ou une quasi-particule qui porte une charge électrique. En se déplaçant, les porteurs de charge créent un courant électrique, comme les ions dans les solutions liquides et les électrons dans les solides. En électronique cette notion est incontournable, les deux porteurs de charge considérés sont les électrons, portant une charge −e, les trous, peuvent se déplacer assez librement dans le réseau cristallin.
FerromagnétismeLe ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
Densité de chargeLa densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.
Charge électriqueLa charge électrique est une propriété fondamentale de la matière qui lui permet d'interagir par le biais de champs électromagnétiques. Il s'agit d'une grandeur scalaire, qui joue pour l'interaction électromagnétique le même rôle que la masse pour l'interaction gravitationnelle. Toutefois, contrairement à cette dernière, il existe deux types de charges électriques que l'on distingue par leurs signes positif ou négatif. Des charges de même signe se repoussent, tandis que celles de signes opposés s'attirent.