Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
PolaritonLes polaritons sont des quasiparticules issues du couplage fort entre une onde lumineuse et une onde de polarisation électrique. Plusieurs cas de figure sont possibles : L'onde de polarisation est un phonon optique, c’est-à-dire essentiellement l'oscillation mécanique de deux atomes de charge opposée à l'intérieur d'un cristal. Les polaritons phononiques ont été beaucoup étudiés par la spectroscopie Raman dans les années 1970 - 80 et ont permis de mesurer la constante diélectrique à haute fréquence dans les semiconducteurs.
Isolant topologiqueUn isolant topologique est un matériau ayant une structure de bande de type isolant mais qui possède des états de surface métalliques. Ces matériaux sont donc isolants "en volume" et conducteurs en surface. En 2007, cet état de matière a été réalisé pour la première fois en 2D dans un puits quantique de (Hg,Cd)Te . Le BiSb (antimoniure de bismuth) est le premier isolant topologique 3D à être réalisé. La spectroscopie de photoélectrons résolue en angle a été l'outil principal qui a servi à confirmer l'existence de l'état isolant topologique en 3D.
Défaut cristallinvignette|Défauts ponctuels vus au MET (a, atome de S substitué par Mo) et lacunes (b, atomes de S manquants). Echelle barre: 1 nm. Un 'défaut cristallin' est une interruption de la périodicité du cristal. La périodicité d'un cristal représente la répétition régulière des positions atomiques dans les trois directions de l'espace. Les motifs réguliers sont interrompus par des défauts cristallographiques. Ils peuvent être ponctuels (dimension 0), linéaires (dimension 1), planaires (dimension 2) ou volumiques (dimension 3).
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Topological quantum numberIn physics, a topological quantum number (also called topological charge) is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations.
Topological quantum computerA topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime (i.e., one temporal plus two spatial dimensions). These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Théorie des cordes topologiquesEn physique théorique, la théorie des cordes topologiques est une version simplifiée de la théorie des supercordes où seule la topologie de la feuille d’univers (i.e. la surface générée par l’évolution temporelle de la corde) entre en compte dans le calcul de la . La théorie des cordes topologiques correspond au cas où la théorie conforme couplée à la gravité est un modèle sigma non linéaire en deux dimensions dont l’espace-cible est une variété de Calabi-Yau.
Tourbillon marginalthumb|150px|right|Traces de condensation dues au tourbillon marginal aux extrémités des ailes d'un F-15E après un ravitaillement en vol Le tourbillon marginal (en anglais wingtip vortex ou au pluriel wingtip vortices) est le tourbillon qui se crée à l'extrémité d'une aile ou d'une pale d'un avion produisant de la portance. Il est aussi appelé Tourbillon de Prandtl. Le tourbillon marginal s'explique par le mouvement de l'air passant de la zone de surpression (intrados) vers la zone de dépression (extrados), et par la déflexion de l'écoulement vers le bas qui en résulte.