Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Nyquist rateIn signal processing, the Nyquist rate, named after Harry Nyquist, is a value (in units of samples per second or hertz, Hz) equal to twice the highest frequency (bandwidth) of a given function or signal. When the function is digitized at a higher sample rate (see ), the resulting discrete-time sequence is said to be free of the distortion known as aliasing. Conversely, for a given sample-rate the corresponding Nyquist frequency in Hz is one-half the sample-rate.
Échantillonnage (signal)L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Imagerie par résonance magnétique fonctionnellethumb|Détection par l'IRMf de l'activation des régions du cerveau impliquées dans la perception visuelle. L’imagerie par résonance magnétique fonctionnelle (IRMf) est une application de l' permettant de visualiser, de manière indirecte, l'activité cérébrale. Il s'agit d'une technique d'imagerie utilisée pour l'étude du fonctionnement du cerveau. Elle consiste à enregistrer des variations hémodynamiques (variation des propriétés du flux sanguin) cérébrales locales minimes, lorsque ces zones sont stimulées.
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Fréquence de NyquistLa fréquence de Nyquist, du nom de l'ingénieur électronicien Harry Nyquist, est la fréquence maximale que doit contenir un signal pour permettre sa description non ambiguë par un échantillonnage à intervalles réguliers. Elle est aussi connue sous le nom de fréquence limite de repliement. Elle est égale à la moitié de la fréquence d'échantillonnage. Le théorème d'échantillonnage procède de l'analyse spectrale, qui montre que tout signal peut se décomposer en une somme de sinusoïdes.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Fonction holomorphevignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
SuréchantillonnageLe suréchantillonnage ou sur-échantillonnage est une technique particulière d'échantillonnage. Elle consiste à échantillonner le signal à une fréquence très élevée, beaucoup plus que ne l'exigerait le théorème de Shannon. Le suréchantillonnage permet de : Faciliter la conception du filtre anticrènelage, (ou antirepliement, ou encore anti-aliasing) ; Diminuer le bruit présent dans la bande utile et d'augmenter le rapport signal sur bruit. Il est employé dans les convertisseurs sigma-delta.