Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
GaN based electronic devices have progressed rapidly over the past decades and are nowadays starting to replace Si and classical III-V semiconductors in power electronics systems and high power RF amplifiers. AlGaN/GaN heterostructures have been, until recently, the materials system of choice for nitride based electronics. The limits of AlGaN/GaN technologies are now known and alternative routes able to overcome them are actively investigated. Nearly lattice-matched InAlN/GaN heterostructures have emerged as viable solutions for extending the frequency range achievable by GaN based devices. These heterostructures have also proven a very high thermal stability, becoming of high interest for extreme environment applications. However, despite those great potentials, InAlN/GaN based devices, in particular high electron mobility transistors, have suffered from high leakage currents, strong short channel effects and low breakdown voltage that made them not competitive with respect to AlGaN/GaN technologies. The goal of this thesis is to investigate, understand and control the mechanisms that limit the performance of InAlN/GaN based transistors. Particular attention in this thesis will be given to leakage currents, having gate or buffer origin. Concerning gate leakage currents, an accurate model for InAlN/GaN heterostructures will be established and the expected presence of deep levels will be confirmed by means of photocapacitance spectroscopy. Based on these results, it will be shown that two conduction mechanisms contribute to gate leakage currents. A first mechanism dominates in heterostructures with thin (
Elison de Nazareth Matioli, Hongkeng Zhu
,