Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Absorption (optique)L'absorption en optique, ou en électromagnétisme, désigne un processus physique par lequel l'énergie électromagnétique est transformée en une autre forme d'énergie. Au niveau des photons (quanta de lumière), l'absorption représente le phénomène par lequel l'énergie d'un photon est prise par une autre particule, par exemple un électron. Dans ce cas, si l'énergie du photon (, relation de Planck-Einstein) est égale à celle d'un état excité (ou à la différence entre deux états excités), celui-ci sera absorbé via une transition électronique d'un électron de valence.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
Excitation (physique)En physique, on appelle excitation tout phénomène qui sort un système de son état de repos pour l'amener à un état d'énergie supérieure. Le système est alors dans un état excité. Cette notion est particulièrement utilisée en physique quantique, pour laquelle les atomes possèdent des états quantiques associés à des niveaux d'énergie : un système est dans un niveau excité lorsque son énergie est supérieure à celle de l'état fondamental. Un électron excité est un électron qui possède une énergie potentielle supérieure au strict nécessaire.
Assembleur moléculairevignette|upright|Eric Drexler. Un assembleur moléculaire est un concept purement théorique. Tel que le définit Eric Drexler, il s'agit d' « une machine capable d'encadrer les réactions chimiques en positionnant les molécules réactives avec une précision nanométrique . » Drexler remarque que certaines molécules biologiques telles que les ribosomes correspondent à cette définition, puisque lorsqu'elles sont actives à l'intérieur d'un environnement cellulaire, elles reçoivent des instructions venant des acides ribonucléiques messagers (ARN messagers) qui leur permettent d'assembler des séquences déterminées d'acides aminés pour construire des protéines.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
BiomathématiqueLa biomathématique est le domaine d'étude qui réunit la biologie et les mathématiques. De façon précise les biomathématiques sont constituées par l'ensemble des méthodes et techniques mathématiques, numériques et informatiques qui permettent d'étudier et de modéliser les phénomènes et processus biologiques. Il s'agit donc bien d'une science fortement pluridisciplinaire que le mathématicien seul (ou le biologiste seul) est incapable de développer. Pour naître et vivre cette discipline exige des équipes interdisciplinaires mues par le sens du concret.
Physique expérimentalevignette|La physique expérimentale peut parfois recourir à des instruments de très grandes dimensions : ici, construction du détecteur CMS (Compact Muon Solenoid) du Grand collisionneur de hadrons (LHC) au CERN, en 2003. Les techniciens présents en bas de l'image donnent une idée des dimensions réelles de cet ensemble (15 m de diamètre, 21 m de long, pour un poids de 14 000 tonnes) installé 100 mètres sous la surface du sol.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Réaction chimiqueUne réaction chimique est une transformation de la matière au cours de laquelle les espèces chimiques qui constituent la matière sont modifiées. Les espèces qui sont consommées sont appelées réactifs ; les espèces formées au cours de la réaction sont appelées produits. Depuis les travaux de Lavoisier (1777), les scientifiques savent que la réaction chimique se fait sans variation mesurable de la masse : , qui traduit la conservation de la masse. thumb|La réaction aluminothermique est une oxydo-réduction spectaculaire.