Graphe d'intervallesEn théorie des graphes, un graphe d'intervalles est le graphe d'intersection d'un ensemble d'intervalles de la droite réelle. Chaque sommet du graphe d'intervalles représente un intervalle de l'ensemble, et une arête relie deux sommets lorsque les deux intervalles correspondants s'intersectent. Etant donnés des intervalles , le graphe d'intervalle correspondant est où et Les graphes d'intervalles sont utilisés pour modéliser les problèmes d'allocation de ressources en recherche opérationnelle et en théorie de la planification.
Stable (théorie des graphes)thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Clique (théorie des graphes)thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Problème de la cliquethumb|upright=1.5|Recherche exhaustive d'une 4-clique dans ce graphe à 7 sommets en testant la complétude des C(7,4)= 35 sous-graphes à 4 sommets. En informatique, le problème de la clique est un problème algorithmique qui consiste à trouver des cliques (sous-ensembles de sommets tous adjacents deux à deux, également appelés sous-graphes complets) dans un graphe. Ce problème a plusieurs formulations différentes selon les cliques et les informations sur les cliques devant être trouvées.
Partition en cliquesEn théorie des graphes, une couverture par cliques ou une partition en cliques d'un graphe non orienté est une partition des sommets du graphe en cliques, c'est-à-dire en des ensembles de sommets à l'intérieur desquels deux sommets sont adjacents. Un couverture par cliques minimale est une couverture de taille minimale, c'est-à-dire par un nombre minimal de cliques. Le problème de la couverture par cliques est le problème algorithmique qui consiste à trouver une couverture par cliques minimale.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Nombre de Hadwigervignette|upright=1.4|Un graphe avec quatre sous-graphes connectés qui, lorsqu'ils sont contractés, forment un graphe complet. Il ne possède pas de mineur complet à cinq sommets par le théorème de Wagner, donc son nombre de Hadwiger est exactement quatre. En théorie des graphes, le nombre de Hadwiger d'un graphe non orienté G est la taille du plus grand graphe complet qui peut être obtenu en contractant des arêtes de G. De manière équivalente, le nombre de Hadwiger h(G) est le plus grand entier k pour lequel le graphe complet K k est un mineur de G.
Claw-free graphIn graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph. A claw is another name for the complete bipartite graph K1,3 (that is, a star graph comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no induced subgraph is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the neighborhood of any vertex is the complement of a triangle-free graph.
Densité d'un grapheEn mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.