Interface neuronale directethumb|250px|Schéma d'une interface neuronale directe. Une interface neuronale directe - abrégée IND ou BCI ou encore ICM (interface cerveau-machine, ou encore interface cerveau-ordinateur) est une interface de communication directe entre un cerveau et un dispositif externe (un ordinateur, un système électronique...). Ces systèmes peuvent être conçus dans le but d'étudier le cerveau, d'assister, améliorer ou réparer des fonctions humaines de cognition ou d'action défaillantes. L'IND peut être unidirectionnelle ou bidirectionnelle.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Motor imageryMotor imagery is a mental process by which an individual rehearses or simulates a given action. It is widely used in sport training as mental practice of action, neurological rehabilitation, and has also been employed as a research paradigm in cognitive neuroscience and cognitive psychology to investigate the content and the structure of covert processes (i.e., unconscious) that precede the execution of action. In some medical, musical, and athletic contexts, when paired with physical rehearsal, mental rehearsal can be as effective as pure physical rehearsal (practice) of an action.
Agent intelligentEn intelligence artificielle, un agent intelligent (AI) est une entité autonome capable de percevoir son environnement grâce à des capteurs et aussi d'agir sur celui-ci via des effecteurs afin de réaliser des objectifs. Un agent intelligent peut également apprendre ou utiliser des connaissances pour pouvoir réaliser ses objectifs. Ils peuvent être simples ou complexes. Par exemple, un simple système réactif, comme le thermostat est considéré comme étant un agent intelligent.
Interactions homme-machinethumb|Personne plongée dans la réalité virtuelle grâce à un visiocasque et un gant électronique. thumb|L'interface homme-machine d'un des ordinateurs de bord des missions Apollo. L'interaction Homme-machine (ou interaction humain-machine), appelée IHM, s’intéresse à la conception et au développement de systèmes interactifs en prenant en compte ses impacts sociétaux et éthiques. Les humains interagissent avec les ordinateurs qui les entourent et cette interaction nécessite des interfaces qui facilitent la communication entre l'humain et la machine.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Guided imageryGuided imagery (also known as guided affective imagery, or katathym-imaginative psychotherapy) is a mind-body intervention by which a trained practitioner or teacher helps a participant or patient to evoke and generate s that simulate or recreate the sensory perception of sights, sounds, tastes, smells, movements, and images associated with touch, such as texture, temperature, and pressure, as well as imaginative or mental content that the participant or patient experiences as defying conventional sensory ca
Adaptation (biologie)En biologie, l'adaptation peut se définir d’une manière générale comme l’ajustement fonctionnel de l’être vivant au milieu, et, en particulier, comme l’appropriation de l’organe à sa fonction. L’adaptation correspond à la mise en accord d'un organisme vivant avec les conditions qui lui sont extérieures. Elle perfectionne ses organes, les rend plus aptes au rôle qu’ils semblent jouer dans la vie de l’individu. Elle met l’organisme tout entier en cohérence avec le milieu.