Scaling the Memory Power Wall with DRAM-Aware Data Management
Publications associées (34)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Embedded memories occupy an increasingly dominant part of the area and power budgets of modern systems-on-chips (SoCs). Multi-ported embedded memories, commonly used by media SoCs and graphical processing units, occupy even more area and consume higher pow ...
Database workloads have significantly evolved in the past twenty years. Traditional database systems that are mainly used to serve Online Transactional Processing (OLTP) workloads evolved into specialized database systems that are optimized for particular ...
Among the different types of dynamic random-access memories (DRAMs), gain-cell embedded DRAM (GC-eDRAM) is a compact, low-power, and CMOS-compatible alternative to conventional static random-access memory (SRAM). GC-eDRAM achieves high memory density, as i ...
Even if Dennard scaling came to an end fifteen years ago, Moore's law kept fueling an exponential growth in compute performance through increased parallelization. However, the performance of memory and, in particular, Dynamic Random Access Memory (DRAM), ...
Embedded memories, mostly implemented with static random access memory (SRAM), dominate the area and power of integrated circuits. Gain-cell embedded DRAM (GC-eDRAM) is an alternative to SRAM due to its high density, low power consumption, and two-ported f ...
Among the different types of DRAMs, gain-cell embedded DRAM (GC-eDRAM) is a compact, low-power and CMOS-compatible alternative to conventional SRAM. GC-eDRAM achieves high memory density as it relies on a storage cell that can be implemented with as few as ...
Utilization of edge devices has exploded in the last decade, with such use cases as wearable devices, autonomous driving, and smart homes. As their ubiquity grows, so do expectations of their capabilities. Simultaneously, their formfactor and use cases lim ...
Database systems access memory either sequentially or randomly. Contrary to sequential access and despite the extensive efforts of
computer architects, compiler writers, and system builders, random access to data larger than the processor cache has been s ...
Non-Volatile Memory (NVM) technologies exhibit 4× the read access latency of conventional DRAM. When the working set does not fit in the processor cache, this latency gap between DRAM and NVM leads to more than 2× runtime increase for queries dominated by ...
The effective bandwidth of the FPGA external memory, usually DRAM, is extremely sensitive to the access pattern. Nonblocking caches that handle thousands of outstanding misses (miss-optimized memory systems) can dynamically improve bandwidth utilization wh ...