Deep neural networks (DNNs) have been recently introduced in speech synthesis. In this paper, an investigation on the importance of input features and training data on speaker dependent (SD) DNN-based speech synthesis is presented. Various aspects of the training procedure of DNNs are investigated in this work. Additionally, several training sets of different size (i.e., 13.5, 3.6 and 1.5 h of speech) are evaluated.
Mathew Magimai Doss, Zohreh Mostaani