Orbitale atomiqueredresse=1.5|vignette|Représentation des nuages de probabilité de présence de l'électron (en haut) et des isosurfaces à 90 % (en bas) pour les orbitales 1s, 2s et 2p. Dans le cas des orbitales 2p ( ), les trois isosurfaces 2p, 2p et 2p représentées correspondent à , et . Les couleurs indiquent la phase de la fonction d'onde : positive en rouge, négative en bleu. En mécanique quantique, une orbitale atomique est une fonction mathématique qui décrit le comportement ondulatoire d'un électron ou d'une paire d'électrons dans un atome.
Structure hyperfinevignette|Représentation schématique des niveaux fins et hyperfins de l’hydrogène. La structure hyperfine d’un niveau d’énergie dans un atome consiste en une séparation de ce niveau en états d’énergie très proches. Il s’observe essentiellement par une raie spectrale dans le domaine radio ou micro-onde, comme la raie à 21 centimètres de l’hydrogène atomique. La structure hyperfine s’explique en physique quantique comme une interaction entre deux dipôles magnétiques : Le dipôle magnétique nucléaire résultant du spin nucléaire ; Le dipôle magnétique électronique lié au moment cinétique orbital et au spin de l’électron.
Gaz de FermiUn gaz de Fermi idéal est un état de la matière constitué d'un ensemble de nombreux fermions sans interaction. Les fermions sont des particules ayant un spin demi-entier (1/2, 3/2), comme les électrons, les protons et les neutrons ; la propriété essentielle des fermions est de ne pas pouvoir occuper en même temps le même état quantique, en raison du principe d'exclusion de Pauli.
Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
Quadri-momentEn relativité restreinte, le quadri-moment (ou quadrivecteur impulsion ou quadri-impulsion ou quadrivecteur impulsion-énergie ou quadrivecteur énergie-impulsion) est une généralisation du moment linéaire tridimensionnel de la physique classique sous la forme d'un quadrivecteur de l'espace de Minkowski, espace-temps à 4 dimensions de la relativité restreinte. Le quadri-moment d'une particule combine le moment tridimensionnel et d'énergie : Comme tout quadrivecteur, il est covariant, c'est-à-dire que les changements de ses coordonnées lors d'un changement de référentiel inertiel se calculent à l'aide des transformations de Lorentz.
Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
Electron magnetic momentIn atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μe) is In units of the Bohr magneton (μB), it is -1.00115965218059μB, a value that was measured with a relative accuracy of 1.3e-13. The electron is a charged particle with charge −e, where e is the unit of elementary charge.
Structure fineEn physique atomique, la structure fine décrit le dédoublement de raies spectrales d'un atome. Détectable par spectroscopie à haute résolution spectrale, la structure fine est un effet d'origine relativiste dont l'expression correcte se déduit à partir de l'équation relativiste pour les particules de spin 1/2 : l'équation de Dirac. Les raies denses observées dans les spectres sont prédites par l'étude de l'énergie d’interaction entre l’électron et le proton sans tenir compte du spin et des effets relativistes de l’électron.
Diagramme d'orbitales moléculairesUn diagramme des niveaux d’énergie des orbitales moléculaires, ou diagramme d'orbitales moléculaires, est un outil qualitatif fondé sur la théorie des orbitales moléculaires et en particulier sur la méthode de combinaison linéaire des orbitales atomiques. D'après ces théories, lorsque des atomes se lient pour former une molécule, un certain nombre d'orbitales atomiques se combinent pour former le même nombre d'orbitales moléculaires. Un diagramme d'orbitales moléculaires représente les niveaux d'énergie de ces orbitales moléculaires.
Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.