Interaction spin-orbitevignette|Structures fines et hyperfines dans l'hydrogène. Le couplage des différents moments cinétiques conduit à la division du niveau d'énergie. Non dessiné à l'échelle. Le moment cinétique de spin électronique, S est couplé au moment cinétique orbital électronique, L, pour former le moment angulaire électronique total , J. Celui-ci est ensuite couplé au moment cinétique de spin nucléaire, I, pour former le moment cinétique total, F. Le terme symbole prend la forme 2S+1L avec les valeurs de L représentées par des lettres (S,P,D ,F ,G,H,.
Angular momentum couplingIn quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.
Effet Zeemanvignette|Photo de l'effet Zeeman, prise en 1896 par Pieter Zeeman. L’effet Zeeman désigne la séparation d'un niveau atomique d'énergie défini d'un atome ou d'une molécule en plusieurs sous-niveaux d'énergies distinctes, sous l'effet d'un champ magnétique externe. Il y a donc levée de dégénérescence des niveaux énergétiques. L'effet s'observe aisément par spectroscopie : lorsqu'une source de lumière est plongée dans un champ magnétique statique, ses raies spectrales se séparent en plusieurs composantes.
Rashba effectThe Rashba effect, also called Bychkov–Rashba effect, is a momentum-dependent splitting of spin bands in bulk crystals and low-dimensional condensed matter systems (such as heterostructures and surface states) similar to the splitting of particles and anti-particles in the Dirac Hamiltonian. The splitting is a combined effect of spin–orbit interaction and asymmetry of the crystal potential, in particular in the direction perpendicular to the two-dimensional plane (as applied to surfaces and heterostructures).
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
Structure hyperfinevignette|Représentation schématique des niveaux fins et hyperfins de l’hydrogène. La structure hyperfine d’un niveau d’énergie dans un atome consiste en une séparation de ce niveau en états d’énergie très proches. Il s’observe essentiellement par une raie spectrale dans le domaine radio ou micro-onde, comme la raie à 21 centimètres de l’hydrogène atomique. La structure hyperfine s’explique en physique quantique comme une interaction entre deux dipôles magnétiques : Le dipôle magnétique nucléaire résultant du spin nucléaire ; Le dipôle magnétique électronique lié au moment cinétique orbital et au spin de l’électron.
Structure fineEn physique atomique, la structure fine décrit le dédoublement de raies spectrales d'un atome. Détectable par spectroscopie à haute résolution spectrale, la structure fine est un effet d'origine relativiste dont l'expression correcte se déduit à partir de l'équation relativiste pour les particules de spin 1/2 : l'équation de Dirac. Les raies denses observées dans les spectres sont prédites par l'étude de l'énergie d’interaction entre l’électron et le proton sans tenir compte du spin et des effets relativistes de l’électron.
Dresselhaus effectThe Dresselhaus effect is a phenomenon in solid-state physics in which spin–orbit interaction causes energy bands to split. It is usually present in crystal systems lacking inversion symmetry. The effect is named after Gene Dresselhaus, who discovered this splitting in 1955. Spin–orbit interaction is a relativistic coupling between the electric field produced by an ion-core and the resulting dipole moment arising from the relative motion of the electron, and its intrinsic magnetic dipole proportional to the electron spin.
Moment cinétiqueEn mécanique classique, le moment cinétique (ou moment angulaire par anglicisme) d'un point matériel M par rapport à un point O est le moment de la quantité de mouvement par rapport au point O, c'est-à-dire le produit vectoriel : Le moment cinétique d'un système matériel est la somme des moments cinétiques (par rapport au même point O) des points matériels constituant le système : Cette grandeur, considérée dans un référentiel galiléen, dépend du choix de l'origine O, par suite, il n'est pas possible de com