**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Stability of Tokamak and RFP Plasmas with an Extended Region of Low Magnetic Shear

Thèse EPFL

Résumé

It has been observed experimentally that magnetically confined plasmas, characterised by the safety factor q with a small or slightly inverted magnetic shear, have good confinement properties. Such plasmas typically have no internal transport barrier, operate with q95 around 4 and are good candidates for long pulse operation at high fusion yield in the reactor ITER. These hybrid scenarios are an intermediate step between the reference standard H-mode (high confinement) scenario with monotonic q and inductive current, and advanced scenarios with strongly reversed magnetic shear in which the entire plasma current is ideally generated non-inductively. This thesis focuses on the study of the dynamics of hybrid plasmas, with weak or almost zero magnetic shear, in tokamak and Reversed Field Pinch (RFP) configurations, when q in the central region assumes values close to one (tokamaks) or to a rational number (tokamaks, RFPs), though the exact resonance is avoided. The first part of this thesis is focused on the study of tokamak and RFP equilibria with slightly reversed shear when an extremum in the safety factor is close to a low order rational. These equilibria are characterised by the possible presence of internal helical cores, although the plasma edge is symmetric in the toroidal direction. Such 3D structures can be understood as the result of the nonlinear saturation of ideal MHD modes. The amplitude of large scale m=1 helical displacements in tokamak and RFP plasmas is investigated using contrasting approaches, namely 3D equilibrium and non-linear stability codes. The non-linear amplitude of such saturated modes obtained with the stability code is compared both with the helical core structure resulting from equilibrium numerical calculations, and with analytic predictions which extend the nonlinear treatment of reversed q plasmas to arbitrary toroidal mode numbers. A preliminary study of the impact of a n=1 RMP on the equilibrium helical distorsion is also presented. The second part of the thesis is devoted to the analytical and numerical study of the stability of an initially axisymetric tokamak configuration when the safety factor is almost flat and very close to a rational value over a macroscopically extended region in the plasma centre. Such conditions typically occur either in hybrid scenarios or following reconnection of a global instability such as a sawtooth. This configuration is characterised by non-negligible coupling between a fundamental mode and its Fourier adjacent modes. A dispersion relation has been derived both for ideal and resistive modes, with additional non-MHD effects such as plasma diamagnetism, viscosity and equilibrium velocity flows. The analytical results show that the resistive sidebands coupled to a core kink-like mode exhibit extremely fast growth, though additional non-MHD effects tend to moderately reduce the extreme growth rate of the resistive modes. The existence of such modes has been confirmed numerically, where the sensitivity of the growth rate to changes in resistivity and two-fluid effects has been demonstrated, and thus in turn provides generally good agreement with the analytical theory developed. A family of modes are obtained, including modes with novel scaling against plasma resistivity, some of which rotate in the electron diamagnetic direction, and others in the ion diamagnetic direction, consistent with experimental observations in e.g. TCV during hybrid-like operation.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (29)

État plasma

thumb|upright|Le soleil est une boule de plasma.
thumb|Lampe à plasma.|168x168px
thumb|upright|Les flammes de haute température sont des plasmas.
L'état plasma est un état de la matière, tout comme l

Tokamak

thumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite.
Un tokamak est un dispositif de confinement magnétique expérimental ex

Découpage plasma

Le découpage plasma est un procédé de découpage par fusion localisée, dans lequel un jet de gaz ou d’air comprimé chasse le métal porté à une température de fusion.
La température générée par l'arc

Publications associées (140)

Chargement

Chargement

Chargement

Information about the poloidal field inside the plasma and about the current density profile is essential for the understanding of the behavior of tokamak plasmas. The poloidal field outside the plasma edge is easily measured by a set of magnetic coils, whereas measurements of the magnetic field distribution inside the plasma requires dedicated and often complex diagnostic systems. One of the methods is polarimetry using beams of electromagnetic waves traversing the plasma. It makes use of the fact that the magnetic field modifies the refractive index of the plasma and as a consequence affects the state of polarization of the passing waves. Specifically, Faraday rotation refers to the case of a linearly polarized wave propagating parallel to a magnetic field. In this case, the rotation of the polarization vector is proportional to the product of electron density and parallel magnetic field component. This thesis is devoted to the design of a specific polarimeter system and its implementation on the TCV tokamak. The conceptual design took into account the particular requirements of the TCV experiments and its experimental program with particular interest in measurements of current density profiles in low-density, EC-heated plasmas. Aiming at optimum performance of the polarimeter in this parameter range, the FIR laser wavelength of 432.5 µm was chosen. Since TCV is already equipped with an interferometer (at 214 µm) for measurements of the line-integrated density along 14 chords, the polarimeter was built as a separate instrument. The number of 10 spatial channels to cover the plasma diameter was found as a compromise between desired spatial resolution, access constraints and cost. The measurement of the Faraday rotation angle is based on a method suggested by Dodel and Kunz [1], which uses optical beams with rotating linear polarization. In this case, the Faraday rotation angle is retrieved from a phase measurement comparing the modulated signals from the probe detectors with that from a reference detector and to first order is insensitive to amplitude variations of the signals. Waveguide detectors based on Schottky barrier diodes are used as detectors for their sensitivity and large electrical bandwidth. Signal processing and analysis is performed in two branches : a) using specifically built analog electronic phase detectors followed by slow (250 kHz) ADCs b) using fast (5 MHz) ADCs and numeric signal processing on a mainframe computer. The thesis covers the description of the design and the various components of the polarimeter, presents initial tests and an evaluation of its performance based on simulations using real plasma configurations of TCV. The analysis of specific tests with the system installed on TCV revealed the presence of perturbations leading to parasitic contributions to the measured phase angles. The results of first measurements of the Faraday rotation angle for different plasma conditions on TCV are presented. Comparing the measured Faraday rotation angles with the results of calculations showed qualitative agreement, in particular the effects of an increase in electron density and of the reversal of the current direction were clearly seen. The system is also capable to detect a radial displacement of the magnetic axis of the plasma, as was demonstrated by comparing measurements from two specific plasma configurations. However, the absolute values still show significant deviations from the expected ones based on calculations. The discrepancies increase with increasing Faraday angle and depend on the direction of the plasma current. At high electron densities beam refraction becomes a problem and may lead to significant errors in the measurements and eventually to complete loss of the signal in several channels. In its present status, the polarimeter cannot yet provide results that are suitable to reconstruct the poloidal field or the current density profile of the plasma. Tentative explanations for this problem are given, but further specific tests are necessary to confirm them. Even in its present state, the polarimeter may be used to detect transient relative changes in the profiles of electron density and current. This was demonstrated by a series of experiments in plasmas with sawtooth activity. Comparing the signals from the polarimeter with those from other multi-chord diagnostics (interferometer and soft X-ray detectors) clearly revealed correlations but also specific differences. These experimental studies showed that the Far-Infrared Polarimetry still requires further improvements, but has potential to become a valuable diagnostic capable of directly measuring the current density profile in the TCV tokamak.

The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the frame of this thesis, the impact of plasma shaping and heating on the properties of the edge transport barrier (ETB) in the high confinement mode (H-mode) was studied. This mode of operation is foreseen as one of the reference scenarios for ITER, the International Tokamak Experimental Reactor, which is being built to demonstrate the feasibility of thermonuclear fusion using magnetic confinement. A feature of H-mode regime operation are edge localized modes (ELMs), instabilities driven by the steep pressure gradients that form in the plasma edge region due to a transport barrier. During an ELM event, energy and particles are expelled from the plasma in a short burst. This will cause serious problems with respect to the heat load on plasma facing components in a tokamak of the size of ITER. Understanding of the phenomena associated with ELMs is thus required and dedicated investigations of their theory and experimental observations are carried out in many laboratories worldwide. This thesis presents several experimental and numerical investigations of tokamak behavior for configurations where the plasma edge plays an important role. From the experimental viewpoint, studies of transport barriers are challenging, as plasma parameters change strongly within a narrow spatial region. As part of the work presented here, the TCV Thomson scattering system was upgraded to meet the requirements for diagnosing electron temperature and density with high spatial resolution in the region of internal and external transport barriers. Simultaneously, the data analysis was significantly improved to cope with statistical uncertainties and alleviate eventual systematic errors. For measurements of the time evolution of density and temperature profile during the ELM cycle, the low repetition rate of the lasers used for Thomson scattering is a limiting. Although the system on TCV comprises 3 laser units that may be triggered in sequence with time separations down to 1 ms, time evolution over longer periods can only be reconstructed from repetitive events. In this context, an adjustment of the laser trigger to improve the synchronization with the ELM event is an advantage. A method was developed and implemented to generate a synchronizing trigger sequence, by a real-time monitoring of the D-alpha emission, which provides a marker for the ELM event. Recently, a "snowflake" (SF) divertor configuration, proposed as a possible solution to reduce the plasma-wall interaction by changing the divertor's poloidal magnetic field topology, was generated, for the first time, in TCV. A numerical code (KINX), based on a magnetohydrodynamic model (ideal MHD), was used to investigate the stability limits of this configuration under H-mode conditions and compare them with a similar standard single-null equilibrium. In a series of experiments, improved energy confinement was found and explained by improved stability of the edge region in the SF configuration. The influence of the pedestal structure in ELMy H-mode plasmas on the energy confinement and on ELM energy losses was investigated. The different ELM regimes found in TCV were analyzed, in particular the transition between type-III to type-I ELMs. The operational boundary of each ELM regime was characterized and verified by ideal MHD stability simulations for the ETB region. Recent studies on the scaling of the pedestal width with normalized poloidal pressure were confirmed. Using the capabilities of TCV, the influence of plasma shaping on pedestal parameters and MHD stability limits was investigated. In the past, models were developed to describe the onset of type-I ELMs, which are associated with modes in the ETB region arising from a coupling of pressure- and current-driven instabilities (coupled kink-ballooning modes). Experimental studies were performed to trace the temporal evolution of pedestal parameters characterizing the ETB during an ELM cycle. The results of these experiments were analyzed using information from MHD stability calculations. It is concluded that these models are capable of predicting limits as necessary conditions for ELM activity, but are not sufficient to fully explain ELM triggering.

The Tokamak concept, based on magnetic confinement of a hydrogen plasma, is one of today's most promising paths to energy production by nuclear fusion. The experimental scenarios leading to the largest fusion rate are based on a high confinement plasma regime, the H-mode, in which the energy and particle confinement are enhanced by a transport barrier located at the plasma edge and forming a pedestal in the plasma pressure profile. In standard axisymmetric magnetic configurations, stationary H-mode regimes suffer from instabilities of the plasma edge, the so-called edge localized modes (ELMs), leading to potentially damaging repetitive ejections of heat and particles toward the plasma facing components. In ITER, a Tokamak currently being built to demonstrate net power production from fusion, type I ELMs are expected to occur during high performance discharges. It is expected that the power flux released by these ELMs will cause an intolerable erosion and heat load on the plasma facing components. The control of ELMs, in terms of frequency and energy loss, is therefore of primary importance in the field of magnetic fusion and is subject to an intense research effort worldwide. This thesis, in line with this effort, focuses on two particular ELM control methods: local continuous or modulated heating of the plasma edge, and application of resonant magnetic perturbations (RMP). In this thesis, the effects of plasma edge heating on the ELM cycle have been investigated by applying electron cyclotron resonant heating (ECRH) to the edge of an H-mode plasma featuring type I ELMs in the Tokamak à Configuration Variable (TCV). As the power deposition location is shifted gradually toward the plasma pressure pedestal, an increase of the ELM frequency by a factor 2 and a decrease of the energy loss per ELM by the same factor are observed, even though the power absorption efficiency is reduced. This unexpected and, as yet, unexplained phenomenon, observed for the first time, runs contrary to the intrinsic type I ELM power dependence and provides a new approach for ELM mitigation. The effects of heating power modulation on the ELM cycle have also been experimentally investigated. It showed that power modulation synchronized in real-time with the ELM cycle is able to pace the ELMs with low deviation from a given frequency. Experimental results also clearly indicate that the ELM frequency purely remains a function of the heating power averaged over the ELM cycle, so that power modulation itself is not able to drive the ELM frequency and only has a stabilization effect. These results are in qualitative agreement with a simple 0D finite confinement time integrator model of the ELM cycle. RMP consists in applying a magnetic field perpendicular to the plasma magnetohydrodynamic equilibrium flux surfaces with a spatial variation tuned to align with the equilibrium magnetic field lines. If each coil of an RMP coil system (i.e. a set of toroidally and poloidally distributed coils) is powered with an independent power supply, the coil current distribution can be tuned to optimize the RMP space spectrum. In the course of this thesis, a multi-mode Lagrange method, with no assumption on the coil geometry or spatial distribution, has been developed to determine this optimum, in the limit of the vacuum magnetic field approximation. This method appears to be an efficient way to minimize the parasitic spatial modes of the magnetic perturbation, and the coil current requirements, while imposing the amplitude and phase of a set of target modes. A figure of merit measuring the quality of a perturbation spectrum with respect to RMP independently of the considered coil system or plasma equilibrium is also proposed. To facilitate the application of the Lagrange method, a spectral characterization of the coil system, based on a generalized discrete Fourier transform applied in current space, is performed to determine how spectral degeneracy and side-bands creation limit the number of simultaneously controllable target modes. Finally, this thesis sets the foundations of experimental research in the particular subject of RMP at CRPP by proposing a physics-based design for a multi-purpose saddle coil system (SCS) for TCV, a coil system located and powered such as to create a helical magnetic perturbation. Using independent power supplies, the toroidal periodicity of this perturbation is tunable, allowing simultaneously ELM control, error field correction and vertical control. Other experimental applications, like resistive wall mode and rotation control, are also in view. In this thesis, the adequacy of two SCS designs, an in-vessel one and an ex-vessel one, is assessed with respect to the desired experimental applications. The current requirements and the system performances are also characterized. The conducting vessel wall is accounted for in a model used to determine the coupled response functions of the SCS, the screening of the magnetic perturbation by the wall, the induced voltages and currents during a plasma disruption and the maximal magnetic forces exerted on the SCS. A scaling of the SCS parameters with the number of coil turns is presented and the issue of coil heating and cooling is discussed.