Fock stateIn quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions.
ParamagnétismeLe paramagnétisme désigne en magnétisme le comportement d'un milieu matériel qui ne possède pas d'aimantation spontanée mais qui, sous l'effet d'un champ magnétique extérieur, acquiert une aimantation orientée dans le même sens que le champ magnétique appliqué. Un matériau paramagnétique possède une susceptibilité magnétique de valeur positive (contrairement aux matériaux diamagnétiques). Cette grandeur sans unité est en général assez faible (dans une gamme allant de à ).
Particle number operatorIn quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles. The number operator acts on Fock space. Let be a Fock state, composed of single-particle states drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators and we define the number operator by and we have where is the number of particles in state . The above equality can be
Espace de FockL'espace de Fock est une construction algébrique utilisée en mécanique quantique pour construire l'espace des états quantiques d'un nombre variable ou inconnu de particules identiques à partir d'une seule particule de l'espace de Hilbert H. Il porte le nom de Vladimir A. Fock qui l'a présenté pour la première fois dans son article de 1932 "Konfigurationsraum und zweite Quantelung", traduisible par "espace de configuration et deuxième quantification.
ÉlectronL'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets.
Diffraction des électronsLa diffraction des électrons est une technique utilisée pour l'étude de la matière qui consiste à bombarder d'électrons un échantillon et à observer la figure de diffraction résultante. Ce phénomène se produit en raison de la dualité onde-particule, qui fait qu'une particule matérielle (dans le cas de l'électron incident) peut être décrite comme une onde. Ainsi, un électron peut être considéré comme une onde, comme pour le son ou les vagues à la surface de l'eau. Cette technique est similaire à la diffraction X et à la diffraction de neutrons.
MODFETLe MODFET (modulated-doping field effect transistor) ou transistor à effet de champ à dopage modulé est un type de transistor à effet de champ (FET). Il est connu aussi sous le nom de HEMT (High Electron Mobility Transistor), ou transistor à électron à haute mobilité. Comme les autres FET, les MODFET sont utilisés dans les circuits intégrés comme interrupteur numérique. vignette|Structure de bande d'un transistor HEMT n-AlGaAs/GaAs montrant la présence d'une zone de gaz d'électrons 2D.
Seconde quantificationLa seconde quantification, aussi appelée quantification canonique, est une méthode de quantification des champs introduite par Dirac en 1927 pour l'électrodynamique quantique. Elle consiste à partir d'un champ classique tel que le champ électromagnétique, à le considérer comme un système physique et à remplacer les grandeurs classiques décrivant l'état du champ par un état quantique et des observables de la physique quantique. On aboutit naturellement à la conclusion que l'énergie du champ est quantifiée, chaque quantum représentant une particule.
Interference lithographyInterference lithography (or holographic lithography) is a technique for patterning regular arrays of fine features, without the use of complex optical systems or photomasks. The basic principle is the same as in interferometry or holography. An interference pattern between two or more coherent light waves is set up and recorded in a recording layer (photoresist). This interference pattern consists of a periodic series of fringes representing intensity minima and maxima.
Quantum dot solar cellA quantum dot solar cell (QDSC) is a solar cell design that uses quantum dots as the captivating photovoltaic material. It attempts to replace bulk materials such as silicon, copper indium gallium selenide (CIGS) or cadmium telluride (CdTe). Quantum dots have bandgaps that are adjustable across a wide range of energy levels by changing their size. In bulk materials, the bandgap is fixed by the choice of material(s).