Publication

Ant Methaheuristics with Adapted Personalities for Vehicle Routing Problem

Rémy Glardon, Nicolas Zufferey, Jaime Farres
2015
Article de conférence
Résumé

At each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (short term profit or heuristic information) and the trail system (central memory which collects information during the search process). Usually, all the ants of the population have the same char- acteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed. It relies on the use of ants with different per- sonalities. Such a method has been adapted to the well-known vehicle routing problem, and the obtained average results are very encouraging. On one benchmark instance, new best results have been found.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.