Adaptive controlAdaptive control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain.cite journal|author=Chengyu Cao, Lili Ma, Yunjun Xu|title="Adaptive Control Theory and Applications", Journal of Control Science and Engineering'|volume=2012|issue=1|year=2012|doi=10.1155/2012/827353|pages=1,2|doi-access=free For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is needed that adapts itself to such changing conditions.
Systems modelingSystems modeling or system modeling is the interdisciplinary study of the use of models to conceptualize and construct systems in business and IT development. A common type of systems modeling is function modeling, with specific techniques such as the Functional Flow Block Diagram and IDEF0. These models can be extended using functional decomposition, and can be linked to requirements models for further systems partition.
Parameter identification problemIn economics and econometrics, the parameter identification problem arises when the value of one or more parameters in an economic model cannot be determined from observable variables. It is closely related to non-identifiability in statistics and econometrics, which occurs when a statistical model has more than one set of parameters that generate the same distribution of observations, meaning that multiple parameterizations are observationally equivalent.
Extrapolation de RichardsonEn analyse numérique, le procédé d'extrapolation de Richardson est une technique d'accélération de la convergence. Il est ainsi dénommé en l'honneur de Lewis Fry Richardson, qui l'a popularisé au début du . Les premières utilisations remontent à Huygens en 1654 et Takebe Kenkō en 1723, pour l'évaluation numérique de π. Ce procédé est notamment utilisé pour définir une méthode numérique d'intégration : la méthode de Romberg, accélération de la méthode des trapèzes.
Identification (statistiques)En statistiques et en économétrie, l'identification (ou identifiabilité) est une propriété d'un modèle statistique. En statistiques, on dit qu'un modèle est identifiable s'il est possible d'apprendre la vraie valeur des paramètres à partir d'un nombre infini d'observations. On considère le modèle statistique : avec : l'espace de réalisation des variables aléatoires l'espace des valeurs possibles pour le paramètre une loi de probabilité de densité On définit alors la fonction de vraisemblance comme : On dit
RéfutabilitéLa réfutabilité (également désignée par le recours à l'anglicisme falsifiabilité) a été introduite par Karl Popper et est considérée comme un concept important de l'épistémologie, permettant d'établir une démarcation entre les théories scientifiques et celles qui ne le sont pas. Une affirmation, une hypothèse, est dite réfutable si et seulement si elle peut être logiquement contredite par un test empirique ou, plus précisément, si et seulement si un énoncé d'observation (vrai ou faux) ayant une interprétation empirique (respectant ou non les lois actuelles et à venir) contredit logiquement la théorie.