En analyse numérique, le procédé d'extrapolation de Richardson est une technique d'accélération de la convergence. Il est ainsi dénommé en l'honneur de Lewis Fry Richardson, qui l'a popularisé au début du . Les premières utilisations remontent à Huygens en 1654 et Takebe Kenkō en 1723, pour l'évaluation numérique de π.
Ce procédé est notamment utilisé pour définir une méthode numérique d'intégration : la méthode de Romberg, accélération de la méthode des trapèzes.
On suppose que la quantité inconnue A peut être approchée par une fonction A(h) avec une convergence d'ordre n en h
expression dans laquelle le coefficient an n'est pas connu. Le principe d'extrapolation consiste à supprimer le terme en hn par combinaison linéaire de deux valeurs de A(h), calculés avec des h différents : par exemple A(h) et A(h/2). On obtient :
R(h) est l'extrapolé de Richardson qui approche A à l'ordre m>n en h. Le facteur 2 peut être remplacé par n'importe quel autre facteur. L'intérêt de la méthode est qu'il sera fréquemment plus aisé d'obtenir une précision donnée en calculant R(h) que A(h) avec un h beaucoup plus petit (risque d'erreur d'arrondi, grande quantité de calcul ...).
On suppose que l'on dispose d'une approximation de A avec une formule d'erreur de cette forme
les coefficients étant inconnus. On se fixe un paramètre réel r>1 et on forme une combinaison entre la relation précédente et cette même relation prise au point
Le terme en hk0 a disparu. Cette formule peut être itérée pour augmenter l'ordre, en évaluant A(h) successivement aux points .
Pour les formules d'erreur pouvant être exprimé sous la forme
avec une fonction connue telle que , un algorithme d'interpolation polynomial (par exemple l'algorithme d'Aitken-Neville) peut être utilisé. Dans ce cas, la suite des subdivisions hn n'a pas nécessité d'être en progression géométrique.
Dans ce cas, le résultat de l'extrapolation de Richardson s'obtient en calculant la valeur en zéro du polynôme d'interpolation passant par les points , où les hi forment une suite décroissant vers 0.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'objectif de ce cours est d'étudier les différentes manifestations des mondes totalitaires dans la fiction. Plus précisément, nous regarderons comment les écrivains racontent l'aliénation de l'homme
Digital ENAC aims to provide students with the ability to apply the principles of coding to the practical life of designers and engineers. We will not focus on a specific coding language, but will ext
This course introduces students to modern computational and mathematical techniques for solving problems in chemistry and chemical engineering. The use of introduced numerical methods will be demonstr
En mathématiques, une transformation de suite est un opérateur défini sur un espace donné de suites (un espace de suites). Les transformations de suites comptent des applications linéaires telles que la convolution avec une autre suite et la sommation d'une suite et, plus généralement, sont définies pour l'accélération de suites et de séries, qui vise à augmenter la vitesse de convergence d'une suite ou d'une série à convergence lente.
En mathématiques, laccélération de suite est une méthode de transformation de suites ou de série numérique visant à améliorer la vitesse de convergence d'une série. Des techniques d'accélération sont souvent utilisées en analyse numérique, afin d'améliorer la rapidité de méthodes d'intégration numérique ou obtenir des identités sur des fonctions spéciales. Par exemple, la transformation d'Euler appliquée à la série hypergéométrique permet de retrouver plusieurs identités connues.
En analyse numérique, la transformation de Shanks est une méthode non linéaire d'accélération de la convergence de suites numériques. Cette méthode est nommée d'après Daniel Shanks, qui l'exposa en 1955, bien qu'elle ait été étudiée et publiée par R. J. Schmidt dès 1941. C'est une généralisation de l'algorithme Delta-2 d'Aitken. Soit une suite numérique (An) dont on cherche à connaitre la limite A.
Explore les courbes de double descente et la surparamétrisation dans les modèles d'apprentissage automatique, en soulignant les risques et les avantages.
We analyze and implement the kernel ridge regression (KR) method developed in Filipovic et al. (Stripping the discount curve-a robust machine learning approach. Swiss Finance Institute Research Paper No. 22-24. SSRN. https://ssrn.com/abstract=4058150, 2022 ...
In this thesis, we conduct a comprehensive investigation into structural instabilities of both elastic and magneto-elastic beams and shells, resulting in a creative proposal to design a programmable braille reader. Methodologically, we combine numerical si ...
EPFL2024
, ,
Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...