Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Continuous-domain visual signals are usually captured as discrete (digital) images. This operation is not invertible in general, in the sense that the continuous-domain signal cannot be exactly reconstructed based on the discrete image, unless it satisfies certain constraints (e.g., bandlimitedness). In this paper, we study the problem of recovering shape images with smooth boundaries from a set of samples. Thus, the reconstructed image is constrained to regenerate the same samples (consistency), as well as forming a shape (bilevel) image. We initially formulate the reconstruction technique by minimizing the shape perimeter over the set of consistent binary shapes. Next, we relax the non-convex shape constraint to transform the problem into minimizing the total variation over consistent non-negative-valued images. We also introduce a requirement (called reducibility) that guarantees equivalence between the two problems. We illustrate that the reducibility property effectively sets a requirement on the minimum sampling density. One can draw analogy between the reducibility property and the so-called restricted isometry property (RIP) in compressed sensing which establishes the equivalence of the minimization with the relaxed minimization. We also evaluate the performance of the relaxed alternative in various numerical experiments.
Mario Paolone, Asja Derviskadic, Paolo Romano