Formules pour les nombres premiersEn mathématiques, la recherche de formules exactes donnant tous les nombres premiers, certaines familles de nombres premiers ou le nombre premier s'est généralement avérée vaine, ce qui a amené à se contenter de formules approchées. Cette page recense les principaux résultats obtenus. L'espoir d'obtenir une formule exacte et simple donnant le n-ième nombre premier p, ou le nombre π(n) de nombres premiers inférieurs ou égaux à n, s'est très tôt heurté à l'extrême irrégularité de leur répartition, ce qui a amené à se contenter d'objectifs moins ambitieux.
Quadruplet premierEn théorie des nombres, un quadruplet premier est une suite de quatre nombres premiers consécutifs de la forme (p, p+2, p+6, p+8). C'est la seule forme possible pour quatre nombres premiers consécutifs d'écarts entre eux minimaux, en dehors des quadruplets (2,3,5,7) et (3,5,7,11). Par exemple (5, 7, 11, 13) et (11, 13, 17, 19) sont des quadruplets premiers. Un quadruplet de nombres premiers impairs consécutifs a un écart entre le plus petit et le plus grand de ces nombres d'au moins 6, il ne peut être de 6 car le seul triplet de nombres premiers consécutifs de la forme (p, p+2, p+4) est (3, 5, 7) (voir triplet premier).